The aerodynamic characteristics of the forward swept wing aircraft have been studied theoretically and an experimentally investigation for the wake field generated by this configuration have been carried out. Low order panel method with the Dirichlet boundary condition have been used to solve the case of the steady, inviscid and compressible flow. Two different panel method techniques have been employed: the source-doublet and the doublet method. The thickness for the various components was considered in the study. Prandtl-Glauert similarity rule has been used to account for the compressibility effects. Experimentally, a model was manufactured from wood with body length (290mm) and main wing span was (204mm). The primary objective of the experimental work was the measurements of the wake dimensions and orientation, velocity distribution along the wake and the wake thickness and growth. The experiments were conducted to four different configurations at four angles of attack. A blower type low speed wind tunnel with solid walls was used in the experimental work. The mean velocity at the test section was (9.3 m/s) and the Reynolds number based on the mean aerodynamic chord was (0.46x105). The measurements showed the existence of a three-dimensionality behavior in the wake flow field. Interference between the canard wake and the wing wake was observed. The canard effect on the wing root area was detected as the separation at the wing root was delayed due to the canard downwash. The velocity defect and wake thickness are increased with the increase of the angle of attack. The comparison of the numerical results with the other published data showed that the method is capable of predicting the aerodynamic coefficients for complex configurations with reasonable accuracy. The source-double method was more accurate and faster than the doublet method for the same number of panels. The aerodynamic coefficients for the forward swept wing aircraft was calculated using the real wake shape measured in the experimental work. Numerical results showed that the canard extended the range of the angle of attack for the aircraft with a significant improvement for the lift curve slope compared to the aircraft without the canard.
The most important function of a prosthetic hand is their ability to perform tasks in a manner similar to a natural hand, so it is necessary to perform kinematic analysis to determine the performance and the ability of the prosthetic human finger design to work normally and smoothly when it's drive by two sets of links that embedded in its structure and pulled by a servomotor, so the Denvit-Hartenberg method was used to analyse the forward kinematics for the prosthetic finger joints to deduction the trajectory of the fingertip and the velocity of the joints was computed by using the Jacobian matrix. The prosthetic finger was modelled by the Solidwork - 2018 program and the results of kinematics were verified using MATLAB. The analys
... Show MoreWe studied the effect of certain environmental conditions for removing heavy metal elements from contaminated aqueous solutions (Cd, Cu, Pb, Fe, Zn, Ni, Cr) using the bacterium Bacillus subtilis to appoint the optimal conditions for removal ,The best optimum temperature range for two isolate was 30-35○C while the hydrogen number for the maximum mineral removal range was 6-7. The best primary mineral removal was 100 mg/L, while the maximum removal for all minerals was obtained after 6 hrs of Cu element time and the maximum removal efficiency was obtained after 24 hrs of Cu element. The results have proved that the best aeration for maximum removal was obtained at rotation speed of 150 rpm/minute. Inoculums of 5ml/100ml which contained 1
... Show MoreIn this study, the feasibility of Forward–Reverse osmosis processes was investigated for treating the oily wastewater. The first stage was applied forward osmosis process to recover pure water from oily wastewater. Sodium chloride (NaCl) and magnesium chloride (MgCl2) salts were used as draw solutions and the membrane that was used in forward osmosis (FO) process was cellulose triacetate (CTA) membrane. The operating parameters studied were: draw solution concentrations (0.25 – 0.75 M), oil concentration in feed solution (FS) (100-1000 ppm), the temperature of FS and draw solution (DS) (30 - 45 °C), pH of FS (4-10) and the flow rate of both DS and FS (20 - 60 l/h). It was found that the water flux and oil concentration in FS increas
... Show MoreRecent studies have proved the important role of fungi in the biodegradation of oil pollutants. The present study aims to find the optimal conditions for the fungi to get the best rate of the biodegradation of the polycyclic aromatic hydrocarbon (PAHs) (Naphthalene) compounds. Soil samples were taken from 18 different sites polluted with oil wastes and cultured then obtained 312 isolated fungi from 64 replicates Primarily screening were done on fungal isolates on solid media containing naphthalene the results revealed that 25 fungal isolates gave good growth, 47 fungal isolates gave Moderate growth, 66 gave weak growth and 147 fungal isolates gave no growth on Naphthalene solid media.
Then secondary screening were done on 25 fungal is
Recent studies have proved the important role of fungi in the biodegradation of oil pollutants. The present study aims to find the optimal conditions for the fungi to get the best rate of the biodegradation of the polycyclic aromatic hydrocarbon (PAHs) (Naphthalene) compounds. Soil samples were taken from 18 different sites polluted with oil wastes and cultured then obtained 312 isolated fungi from 64 replicates Primarily screening were done on fungal isolates on solid media containing naphthalene the results revealed that 25 fungal isolates gave good growth, 47 fungal isolates gave Moderate growth, 66 gave weak growth and 147 fungal isolates gave no growth on Naphthalene solid media.
Then secondary screening were done on 25 fungal is
The aim of this paper, is to discuss several high performance training algorithms fall into two main categories. The first category uses heuristic techniques, which were developed from an analysis of the performance of the standard gradient descent algorithm. The second category of fast algorithms uses standard numerical optimization techniques such as: quasi-Newton . Other aim is to solve the drawbacks related with these training algorithms and propose an efficient training algorithm for FFNN
Abstract :- In this paper, silver nanoparticles had been prepared by chemical reduction method. Many tests had been done to it such as UV-Visible spectrophotometer, XRD, AFM&SEM test. finally an attempt had been done to get the optimum condition to control the grain size of silver Nanoparticles by variation the heating period and other parameters which has an effect in silver Nanoparticles synthesis process. in this method we can get a silver nanoparticles in the size range from 52 to 97 nm.
The aim of this paper was to investigate the removal efficiencies of Zn+2 ions from wastewater by adsorption (using tobacco leaves) and forward osmosis (using cellulose triacetate (CTA) membrane). Various experimental parameters were investigated in adsorption experiment such as: effect of pH (3 - 7), contact time (0 - 220) min, solute concentration (10 - 100) mg/l, and adsorbent dose (0.2 - 5)g. Whereas for forward osmosis the operating parameters studied were: draw solution concentration (10 - 150) g/l, pH of feed solution (4 - 7), feed solution concentration (10 - 100) mg/l. The result showed that the removal efficiency by using adsorption was 70% and the removal efficiency by using forward osmosis was 96.2 %.
... Show More