This study investigated a novel application of forward osmosis (FO) for oilfield produced water treatment from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). FO is a part of a zero liquid discharge system that consists of oil skimming, coagulation/flocculation, forward osmosis, and crystallization. Treatment of oilfield produced water requires systems that use a sustainable driving force to treat high-ionic-strength wastewater and have the ability to separate a wide range of contaminants. The laboratory-scale system was used to evaluate the performance of a cellulose triacetate hollow fiber CTA-HF membrane for the FO process. In this work, sodium chloride solution was used as a feed solution (FS) with a concentration of 76 g/L, while the draw solution (DS) was magnesium chloride solution, and the applied external pressure on the feed solution side was 2 bar. The impact of batch mode with a constant DS concentration (or continuous mode) and batch mode with dilution draw solution concentration (240, 300, and 400 g/L) on the FO performance for oilfield produced water treatment were investigated on normalized flux, recovery, feed solution concentration, reverse salt flux, and rejection. The recovery and feed solution concentration increased with increasing draw solution concentration and time. While the normalized flux increased with increasing the draw solution concentration and decreased with time. The reverse salt flux of Mg2+ and the rejection of Na+ decreased with time. The produced water feed solution was concentrated to 220 g/L at DS concentration of 400 g/L MgCl2 in batch mode with a constant DS concentration after 16.5 h at which the recovery was 65.67%. The reverse salt flux of Mg2+ was 0.06 g/m2 h after 10 h, at which the rejection of Na+ reaches 99.84%.
This study proposes a mathematical approach and numerical experiment for a simple solution of cardiac blood flow to the heart's blood vessels. A mathematical model of human blood flow through arterial branches was studied and calculated using the Navier-Stokes partial differential equation with finite element analysis (FEA) approach. Furthermore, FEA is applied to the steady flow of two-dimensional viscous liquids through different geometries. The validity of the computational method is determined by comparing numerical experiments with the results of the analysis of different functions. Numerical analysis showed that the highest blood flow velocity of 1.22 cm/s occurred in the center of the vessel which tends to be laminar and is influe
... Show MoreThe study discussed here deals with the isolation of Aspergillus niger from palm dates, the formal and the most famous fruit in Iraq, to test and qualify this fungus isolate for its ability to produce citric acid. Submerged fermentation technique was used in the fermentation process. A.niger isolated from “Zahdi” Palme dates was used in the study of the fermentation kinetics to get the production efficiency of citric acid. Kinetics of CA production via fermentation by A. niger S11 was evaluated within 432 h fermentation time and under submerged conditions of 11% (w/v) sucrose, 5% (v/v) inoculum size, pH 4, 30 °C and 150 rpm. The maximum citric acid produced was (37.116 g/l). Kine
Background: The primary stability of the dental implant is a crucial factor determining the ability to initiate temporary implant-supported prosthesis and for subsequent successful osseointegration, especially in the maxillary non-molar sites. This study assessed the reliability of the insertion torque of dental implants by relating it to the implant stability quotient values measured by the Osstell device. Material and methods: This study included healthy, non-smoker patients with no history of diabetes or other metabolic, or debilitating diseases that may affect bone healing, having non-restorable fractured teeth and retained roots in the maxillary non-molar sites. Primary dental implant stability was evaluated using a torque ratc
... Show MoreBACKGROUND: Many genetic factors are known to be related to osteoporosis, and currently the role of the glucagon-like peptide-1 receptor (GLP-1R) gene in bone health has been studied intensively. Some variation of this gene, such as rs1042044 and rs6458093, are known to be linked to metabolic diseases and lower bone mineral density, however their specific contribution to osteoporosis remains largely unexplored. Therefore, this study was conducted to investigate the combined genotypic effect of rs1042044 and rs6458093 as a genetic risk factor for osteoporosis in postmenopausal Iraqi women.METHODS: Blood samples from 75 osteoporosis patients and 75 healthy controls, aged 45-85, were collected. DNA was extracted, and a region of GLP-1R
... Show MorePore pressure means the pressure of the fluid filling the pore space of formations. When pore pressure is higher than hydrostatic pressure, it is named abnormal pore pressure or overpressure. When abnormal pressure occurred leads to many severe problems such as well kick, blowout during the drilling, then, prediction of this pressure is crucially essential to reduce cost and to avoid drilling problems that happened during drilling when this pressure occurred. The purpose of this paper is the determination of pore pressure in all layers, including the three formations (Yamama, Suliay, and Gotnia) in a deep exploration oil well in West Qurna field specifically well no. WQ-15 in the south of Iraq. In this study, a new appro
... Show MoreThe posterior regions of the jaws usually represent a significant risk for implant surgery. A non-valid assessment of the available bone height may lead to either perforation of the maxillary sinus floor or encroachment of the inferior alveolar nerve and consequently to implant failure. This study aimed to evaluate the reliability of surgeon’s decision in appraising the appropriate implant length, in respect to vital anatomical structures, using panoramic radiographs.
Only implants that are inserted in relation to the maxillary sinus (MS) or the mandibular canal (MC) were enrolled
MRY *Khalid Sh. Sharhan, *Naseer Shukur Hussein, INTERNATIONAL JOURNAL OF DEVELOPMENT IN SOCIAL SCIENCE AND HUMANITIES, 2021
Background: This in vitro study compares a novel calcium-phosphate etchant paste to conventional 37% phosphoric acid gel for bonding metal and ceramic brackets by evaluating the shear bond strength, remnant adhesive and enamel damage following water storage, acid challenge and fatigue loading. Material and Methods: Metal and ceramic brackets were bonded to 240 extracted human premolars using two enamel conditioning protocols: conventional 37% phosphoric acid (PA) gel (control), and an acidic calcium-phosphate (CaP) paste. The CaP paste was prepared from β-tricalcium phosphate and monocalcium phosphate monohydrate powders mixed with 37% phosphoric acid solution, and the resulting phase was confirmed using FTIR. The bonded premolars were exp
... Show MoreBackground: A great dental and biomedical interest had been paid to silver nanoparticles because of their antimicrobial activity. Objective: To evaluate the antimicrobial and cytotoxic activity of a newly developed Nano-silver fluoride that was synthesized from moringa oleifera leaf extract against S. mutants. Material and method: The green synthesis method was used to prepare Nano-silver fluoride from moringa oleifera leaf extract. The minimum inhibitory concentration and the minimum bactericidal concentration were evaluated using brain heart infusion plates, while the cytotoxicity was evaluated by the hemolytic activity. Results: Nano-silver fluoride had a bactericidal and bacteriostatic effect (MIC was 60 ppm a
... Show More