<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the curve (AUC), accuracy, receiver operating characteristic (ROC) curve, f-measure, and recall. Experimental results show that random forest is better than any other classifier in predicting diabetes with a 90.75% accuracy rate.</span>
Blood and urine samples were collected from 203 patients to study the relationship between Diabetes mellitus and urinary tract infections (UTI). Blood and urine specimens were subjected for estimation of random blood sugar, in addition to detection of the most pathogen bacteria which cause urinary tract infection in diabetic patients. The study included the detection of bacterial sensitivity to some antibiotics used in treating urinary tract infections, and also included the study of genetic basis which cause both types of diabetes mellitus. The results can be summarized as follows: The incidence of type ? diabetes in males was (35.8%), and (45.9%) in females . and type 2 diabetes in males was (49.6%), while in females was (40.16%).The inc
... Show MoreBackground: Dental implant is one of the most important options for teeth replacement. In two stage implant surgery, a few options could be used for uncovering implants, scalpel and laser are both considered as effective methods for this purpose. The Aim of the study: To compare soft tissue laser and scalpel for exposing implant in 2nd stage surgery in terms of the need for anesthesia, duration of procedure and pain level assessment at day 1 and day 7 post operatively using visual analogue scale . Materials and methods: Ten patients who received bilateral implants participated after healing period completed, gingival depth over each implant was recorded and then implant(s) were exposed by either scalpel or laser with determination for th
... Show MoreThis research attempts to find the association between single nucleotide polymorphism (SNP) of IL2+166 gene (rs2069763) and type 2 diabetes mellitus (T2DM) in a sample of Iraqi patients. A total of 44 patients and 55 apparently healthy volunteers were genotyped for the SNP using polymerase chain reaction test. Three genotypes (GG, GT, and TT) corresponding to two alleles (G and T) were found to have SNP. Both study groups’ genotypes had a good agreement for the analysis of Hardy-Weinberg Equilibrium. The results revealed increased frequencies between the observed and expected GG and TT genotypes and IL2+166 SNP T allele in T2DM patients (40.9 vs. 40.0 %; OR = 1.04; 95% CI, 0.47 - 2.31), whereas the values in the control group were
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MorePredicting permeability is a cornerstone of petroleum reservoir engineering, playing a vital role in optimizing hydrocarbon recovery strategies. This paper explores the application of neural networks to predict permeability in oil reservoirs, underscoring their growing importance in addressing traditional prediction challenges. Conventional techniques often struggle with the complexities of subsurface conditions, making innovative approaches essential. Neural networks, with their ability to uncover complicated patterns within large datasets, emerge as a powerful alternative. The Quanti-Elan model was used in this study to combine several well logs for mineral volumes, porosity and water saturation estimation. This model goes be
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al-Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah
... Show MoreDifferent frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show MoreLung cancer is one of the most serious and prevalent diseases, causing many deaths each year. Though CT scan images are mostly used in the diagnosis of cancer, the assessment of scans is an error-prone and time-consuming task. Machine learning and AI-based models can identify and classify types of lung cancer quite accurately, which helps in the early-stage detection of lung cancer that can increase the survival rate. In this paper, Convolutional Neural Network is used to classify Adenocarcinoma, squamous cell carcinoma and normal case CT scan images from the Chest CT Scan Images Dataset using different combinations of hidden layers and parameters in CNN models. The proposed model was trained on 1000 CT Scan Images of cancerous and non-c
... Show MoreAge, hypertension, and diabetes can cause significant alterations in arterial structure and function, including changes in lumen diameter (LD), intimal-medial thickness (IMT), flow velocities, and arterial compliance. These are also considered risk markers of atherosclerosis and cerebrovascular disease. A difference between right and left carotid artery blood flow and IMT has been reported by some researchers, and a difference in the incidence of nonlacunar stroke has been reported between the right and left brain hemispheres. The aim of this study was to determine whether there are differences between the right and left common carotid arteries and internal carotid arteries in patient