Preferred Language
Articles
/
VBhwMpUBVTCNdQwCwSoD
Analyzing the behavior of different classification algorithms in diabetes prediction
...Show More Authors

<span lang="EN-US">Diabetes is one of the deadliest diseases in the world that can lead to stroke, blindness, organ failure, and amputation of lower limbs. Researches state that diabetes can be controlled if it is detected at an early stage. Scientists are becoming more interested in classification algorithms in diagnosing diseases. In this study, we have analyzed the performance of five classification algorithms namely naïve Bayes, support vector machine, multi layer perceptron artificial neural network, decision tree, and random forest using diabetes dataset that contains the information of 2000 female patients. Various metrics were applied in evaluating the performance of the classifiers such as precision, area under the curve (AUC), accuracy, receiver operating characteristic (ROC) curve, f-measure, and recall. Experimental results show that random forest is better than any other classifier in predicting diabetes with a 90.75% accuracy rate.</span>

Scopus Crossref
View Publication
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Measuring and Analyzing of the Relationship between the Financial Development, Economic growth, and Poverty in Iraq with the Autoregressive Distributed lag Model framework for the period (1980-2010)
...Show More Authors

The developed financial system is essential for increasing economic growth and poverty reduction in the world. The financial development helps in poverty reduction indirectly via intermediate channel which is the economic growth. The financial development enhancing economic development through mobilization of savings and channel them to the most efficient uses with higher economic and social returns. In addition, the economic growth reduces the poverty through two channels. The first is direct by increasing the introduction factors held by poor and improve the situations into the sectors and areas where the poor live. The second is indirect through redistribution the realized incomes from the economic growth as well as the realiz

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

View Publication
Publication Date
Tue Jan 30 2024
Journal Name
Iraqi Journal Of Science
Machine Learning Based Crop Yield Prediction Model in Rajasthan Region of India
...Show More Authors

     The present study investigates the implementation of machine learning models on crop data to predict crop yield in Rajasthan state, India. The key objective of the study is to identify which machine learning model performs are better to provide the most accurate predictions. For this purpose, two machine learning models (decision tree and random forest regression) were implemented, and gradient boosting regression was used as an optimization algorithm. The result clarifies that using gradient boosting regression can reduce the yield prediction mean square error to 6%. Additionally, for the present data set, random forest regression performed better than other models. We reported the machine learning model's performance using Mea

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Al-khwarizmi Engineering Journal
Prediction of Cutting Force in Turning Process by Using Artificial Neural Network
...Show More Authors

       

Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Journal Of Composites For Construction
Prediction of Concrete Cover Separation in Reinforced Concrete Beams Strengthened with FRP
...Show More Authors

Scopus (16)
Crossref (13)
Scopus Clarivate Crossref
Publication Date
Wed Apr 01 2015
Journal Name
Journal Of Economics And Administrative Sciences
Classification & Evaluation of Evidence of deprivation in Iraq (2009) by using Cluster analysis
...Show More Authors

       The study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Classification and Measurement of Land Cover of Wildfires in Australia Using Remote Sensing
...Show More Authors

     Remote sensing techniques used in many studies for classfying and measuring of wildfires. Satellite Landsat8(OLI) imagery is used in the presented work. The satellite is considered as a near-polar orbit, with a high multispectral resolution for covering Wollemi National Park in Australia. The work aims to study and measure wildfire natural resources prior to and throughout fire breakout which occurred in Wollemi National Park in Australia for a year (October, 2019), as well as analyzing the harm resulting from such wildfires and their effects on earth and environment through recognizing satellite images for studied region prior to and throughout wildfires. A discussion of methods for computing the affecred area i

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Agriculture And Crops
Distribution and Classification of Medicinal Plants in Zakhikhah Area of Al-Anbar Desert
...Show More Authors

This study included the Zakhikhah area in the Al- Anbar desert, which it bounded on the north, east, and west by the Euphrates River and on the south by the Ramadi-Qaim road. Several exploratory field trips were taken to the study area. During this time, a semi-detailed area survey was carried out based on satellite imagery captured by American Land sat-7, topographic maps, and natural vegetation variance. All necessary field tools, including a digital camera and GPS device, were brought to determine the soil type and collect plant samples. All of these visits are planned to cover the entire state of Zakhikhah. All vegetation cover observations, identifying sampling sites and attempting to inventory and collect medicinal plants in t

... Show More
View Publication
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Al-khwarizmi Engineering Journal
Prediction of the Scale Removal Rate in Heat Exchanger Piping System Using the Analogies between Mass and Momentum Transfer
...Show More Authors

The possibility of predicting the mass transfer controlled CaCO3 scale removal   rate has been investigated.

Experiments were carried out using chelating agents as a cleaning solution at different time and Reynolds’s number. The results of CaCO3 scale removal or (mass transfer rate) (as it is the controlling process) are compared with proposed model of prandtl’s and Taylor particularly based on the concept of analogy among momentum and mass transfer.

Correlation for the variation of Sherwood number ( or mass transfer rate ) with Reynolds’s number have been obtained .

View Publication Preview PDF