Respiratory tract infections in sheep are among the important health problems that affect all sheep ages around the world. Nine bacterial isolates obtained from sheep with respiratory tract infections were selected to be used in the current study. The isolates included 3 Staphylococcus aureus, 4 Klebsiella pneumoniae, and 2 Pseudomonas aeruginosa. Following the primers design by the Primer3Plus software tool and optimization of the conventional polymerase chain reaction (PCR), the primers were validated for their use in the multiplex PCR experiments. The MFEprimer program was used to check the suitability of the primer set combinations for multiplex PCR. The MFEprimer software was successful in designing the multiplex-PCR experiments and determining the optimal primer set combinations. Multiplex PCR was able to amplify specific DNA sequences of one, two or three target genes of these mixed microorganisms in the same PCR reaction tube. This technique efficiently detected combinations of two organisms, either S. aureus with K. pneumoniae, S. aureus with P. aeruginosa or K. pneumoniae with P. aeruginosa. Moreover, multiplex PCR was also able to detect the presence of the three organisms together in the same reaction tube. To conclude, this study confirmed multiplex-PCR as a specific, sensi- tive, rapid, accurate, and cost-effective molecular diagnostic method for identification and differentiation of three clinically important bacteria associated with sheep respiratory tract infections, including S. aureus, P. aeruginosa, and K. pneumoniae. This can efficiently support control and treatment of such diseases and would increase the economy of the animals’ owners and wellbeing of the animals.
Automatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreBACKGROUND: COVID-19 is resulted from severe acute respiratory syndrome coronavirus 2, which initiated in China in December 2019. Parasites are efficient immune modulators because their ability to stimulate an immune response in infected persons. AIM: This study aims to detect if there is a probable relationship between intestinal parasitic infections and COVID-19. METHODS: Ninety patients consulted at Al-Kindy Teaching Hospital (Al-Shifa center) from October 2020 till April 2021, confirmed infection with COVID-19 by PCR. Stool examination was done for detecting intestinal parasites. RESULTS: From 90 patients, males were 63 (70%), with median age 32 years, while females were 27 (30%), with age 24–44 years. Asymptomatic pati
... Show Moresummary
In this search, we examined the factorial experiments and the study of the significance of the main effects, the interaction of the factors and their simple effects by the F test (ANOVA) for analyze the data of the factorial experience. It is also known that the analysis of variance requires several assumptions to achieve them, Therefore, in case of violation of one of these conditions we conduct a transform to the data in order to match or achieve the conditions of analysis of variance, but it was noted that these transfers do not produce accurate results, so we resort to tests or non-parametric methods that work as a solution or alternative to the parametric tests , these method
... Show MoreThis comprehensive review examines the efficacy and safety of tumor necrosis factor-alpha (TNF-α) inhibitors in treating various autoimmune diseases, and focuses on their application in Iraqi patients. Elevated TNF-α levels are linked to autoimmune disorders, leading to the development of anti-TNF-α therapies such as infliximab, etanercept, adalimumab, certolizumab pegol, and golimumab, which have gained FDA approval for conditions like psoriasis, in¬flammatory bowel disease, ankylosing spondylitis, and rheumatoid arthritis. While these therapies demonstrate sig¬nificant therapeutic benefits, including improved quality of life and disease management, they also carry risks, such as increased susceptibility to infections and pote
... Show MoreIn this study, a novel application of lab-scale dual chambered air-cathode microbial fuel cell (MFC) has been developed for simultaneous bio-treatment of real pharmaceutical wastewater and renewable electricity generation. The microbial fuel cell (MFC) was provided with zeolite-packed anodic compartment and a cation exchange membrane (CEM) to separate the anode and cathode. The performance of the proposed MFC was evaluated in terms of COD removal and power generation based on the activity of the bacterial consortium in the biofilm mobilized on zeolite bearer. The MFC was fueled with real pharmaceutical wastewater having an initial COD concentration equal to 800 mg/L and inoculated with anaerobic aged sludge. Results demo
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreTotal Quality Assurance Concept have appeared in Higher Education Institutions as a result of the continuous criticism for the lower quality of the outputs of these institutions and their inappropriacy to the needs of the job market. The faculty, i.e. teaching staff member, is one of the most important output for his/her responsibility to achieve the stated goals in higher education. This represents a problem that may influence the construction of society which has to limit his tasks, responsibilities, and competencies that should be found in a faculty, and evaluating his teaching profession in light of the prerequisites of the century to become an input to achieve quality assurance in Higher Education. Therefore, the present study aims
... Show MoreA strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as
... Show More