Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth,
... Show MoreHuman action recognition has gained popularity because of its wide applicability, such as in patient monitoring systems, surveillance systems, and a wide diversity of systems that contain interactions between people and electrical devices, including human computer interfaces. The proposed method includes sequential stages of object segmentation, feature extraction, action detection and then action recognition. Effective results of human actions using different features of unconstrained videos was a challenging task due to camera motion, cluttered background, occlusions, complexity of human movements, and variety of same actions performed by distinct subjects. Thus, the proposed method overcomes such problems by using the fusion of featur
... Show MoreBiometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreA Multiple System Biometric System Based on ECG Data
An immunological technique was investigated for the detection of human semen in forensic analysis.This technique included a preparation of anti-human seminal plasma antibodies, by immunizing rabbits with treated human semen. The human semen was treated with an acid to prevent cross reactivity with other human body fluids. The antibody produced was tested against different animal,s seminal fluid samples (dog, goat ,sheep, cow) and human body fluids( saliva, blood , vaginal fluid, ear wax and human semen). It was found that using this developed technique was only selectively responsed with human semen . The prepered kit was evaluated and tested in Forensic laboratory- Ministry of Health. Finally, results were obtained in a c
... Show MoreIn this paper, a subspace identification method for bilinear systems is used . Wherein a " three-block " and " four-block " subspace algorithms are used. In this algorithms the input signal to the system does not have to be white . Simulation of these algorithms shows that the " four-block " gives fast convergence and the dimensions of the matrices involved are significantly smaller so that the computational complexity is lower as a comparison with " three-block " algorithm .
Background: The Epstein-Barr virus (EBV) relates to the torch virus family and is believed to have a substantial impact on mortality and perinatal events, as shown by epidemiological and viral studies. Moreover, there have been documented cases of EBV transmission occurring via the placenta. Nevertheless, the specific location of the EBV infection inside the placenta remains uncertain. Methods: The genomic sequences connected to the latent EBV gene and the levels of lytic EBV gene expression in placental chorionic villous cells are examined in this work. A total of 86 placentas from patients who had miscarriage and 54 placentas from individuals who had successful births were obtained for analysis. Results: The research employed QPCR to dete
... Show MoreThe present study aimed to isolate and diagnose mesenchymal stem cells derived from human bone that is the source generating cells that are the best types of treatment for tissue diseases.
Cells were isolated from the back bone of the human pelvis, separated using density gradual sedimentation method and then the cells were grown on the culture media RPMI-1640 \ 20% FBS.
To detect the purity of cells that have been isolated and have been transplanted immune use the method using CD44 (mesenchymal stem cells marker) CD43, a specific marker for hematopoietic cells Nestin, (the neurons private marker).
The present study has shown that mesenchymal cells that have been isolated and expanded in this experiment has reached up 99.7% for
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreDust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system
... Show More