Image Fusion Using A Convolutional Neural Network
In this paper the behavior of the quality of the gradient that implemented on an image as a function of noise error is presented. The cross correlation coefficient (ccc) between the derivative of the original image before and after introducing noise error shows dramatic decline compared with the corresponding images before taking derivatives. Mathematical equations have been constructed to control the relation between (ccc) and the noise parameter.
The aim of this paper is to approximate multidimensional functions by using the type of Feedforward neural networks (FFNNs) which is called Greedy radial basis function neural networks (GRBFNNs). Also, we introduce a modification to the greedy algorithm which is used to train the greedy radial basis function neural networks. An error bound are introduced in Sobolev space. Finally, a comparison was made between the three algorithms (modified greedy algorithm, Backpropagation algorithm and the result is published in [16]).
In this paper we study and design two feed forward neural networks. The first approach uses radial basis function network and second approach uses wavelet basis function network to approximate the mapping from the input to the output space. The trained networks are then used in an conjugate gradient algorithm to estimate the output. These neural networks are then applied to solve differential equation. Results of applying these algorithms to several examples are presented
This paper proposes a new structure of the hybrid neural controller based on the identification model for nonlinear systems. The goal of this work is to employ the structure of the Modified Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Weight parameters of the hybrid neural structure with its serial-parallel configuration are adapted by using the Back propagation learning algorithm. The ability of the proposed hybrid neural structure for nonlinear system has achieved a fast learning with minimum number
... Show MoreIn this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution
This study aimed to identify the perceived mental image of volunteering, and its relationship to volunteer motivation among a sample of Al-Quds Open University students, as well as to identify the differences in the perceived mental image of volunteering due to variables (gender, year of study, place of residence, college). The researcher has used relational descriptive approach. The researcher has used two questionnaires, the first was used to measure the perceptive mental image of volunteering, and the second to measure the motivation towards volunteering, and the study population may consist of all students of Al-Quds Open University Hebron Branch during the first semester of the academic year 2021/2020 and their number (3462)Male and
... Show MoreIn this paper a hybrid system was designed for securing transformed or stored text messages(Arabic and english) by embedding the message in a colored image as a cover file depending on LSB (Least Significant Bit) algorithm in a dispersed way and employing Hill data encryption algorithm for encrypt message before being hidden, A key of 3x3 was used for encryption with inverse for decryption, The system scores a good result for PSNR rate ( 75-86) that differentiates according to length of message and image resolution.