Preferred Language
Articles
/
VBblHYcBVTCNdQwCOzgK
Bearing capacity of square footing on geogrid reinforced loose sand to resist eccentric load
...Show More Authors

This research presents and discuss the results of experimental investigation carried out on geogrids model to study the behavior of geogrid in the loose sandy soil. The effect of location eccentricity, depth of first layer of reinforcement, vertical spacing, number and type of reinforcement layers have been investigated. The results indicated that the percentage of bearing improvement a bout (22 %) at number of reinforced layers N=1 and about (47.5%) at number of reinforced layers N=2 for different Eccentricity values when depth ratio and vertical spacing between layers are (0.5B and 0.75B) respectively

Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Effect of Adding Sand on Clayey Soil Shear Strength
...Show More Authors
Abstract<p>The effect of adding sand on clayey soil shear strength is investigated in this study. Five different percentage of clay-sand mixtures are used; 100% clay with 0% sand termed 100C, 60% clay with 40% sand termed 60C-40S, 30% clay with 70% sand termed 30C-70S, 15% clay with 85% sand termed 15C-85S, and as well as 100% sand termed 100S. The used clay was obtained from Baghdad city in Iraq and classified as CH soil, while the used sand was taken from Al-Khider area from Iraq and classified as SW soil. The initial dry unit weight for all mixtures is 16 kN/m<sup>3</sup>. The results show that the variations of the soil shear strength properties with soil components content changes</p> ... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Optimum design of stiffened square plates for longitudinal and square ribs
...Show More Authors

For a given loading, the stiffness of a plate or shell structure can be increased significantly by the addition of ribs or stiffeners. Hitherto, the optimization techniques are mainly on the sizing of the ribs. The more important issue of identifying the optimum location of the ribs has received little attention. In this investigation, finite element analysis has been achieved for the determination of the optimum locations of the ribs for a given set of design constraints. In the conclusion, the author underlines the optimum positions of the ribs or stiffeners which give the best results. 

View Publication Preview PDF
Publication Date
Sat Aug 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Probability Concepts of Transfer Load to the Foundation of Container Structure
...Show More Authors

This paper presents stochastic analysis using the perturbation method to model the structure of a container to verify the distributions of probability of maximum and minimum axial forces reactions in piles. The proposed simulation of a container port terminal under 11 scenarios of load combinations was presented. The probability distributions for live loads are assigned according to the input parameters of simulation data. Part of the load itself is implicitly combined such as vertical live load which includes the weight of equipment and containers and wind load. The structural model was simulated in the software STAAD Pro., while the statistical analyses were performed with MATLAB. The results demonstrated that, the most significant extern

... Show More
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads
...Show More Authors

This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the reference specim

... Show More
Crossref (3)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads
...Show More Authors

This paper investigates the experimental response of composite reinforced concrete with GFRP and steel I-sections under limited cycles of repeated load. The practical work included testing four beams. A reference beam, two composite beams with pultruded GFRP I-sections, and a composite beam with a steel I-beam were subjected to repeated loading. The repeated loading test started by loading gradually up to a maximum of 75% of the ultimate static failure load for five loading and unloading cycles. After that, the specimens were reloaded gradually until failure. All test specimens were tested under a three-point load. Experimental results showed that the ductility index increased for the composite beams relative to the refe

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Journal Of Engineering
The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads
...Show More Authors

Publication Date
Mon Jan 01 2018
Journal Name
International Journal Of Science And Research (ijsr)
Height-to-Length Ratio Effect on the Response of Unreinforced Masonry Wall Subjected to Vertical Load Using Detailed-Micro Modeling Approach
...Show More Authors

This paper aimed to investigate the effect of the height-to-length ratio of unreinforced masonry (URM) walls when loaded by a vertical load. The finite element (FE) method was implemented for modeling and analysis of URM wall. In this paper, ABAQUS, FE software with implicit solver was used to model and analysis URM walls subjected to a vertical load. In order to ensure the validity of Detailed Micro Model (DMM) in predicting the behavior of URM walls under vertical load, the results of the proposed model are compared with experimental results. Load-displacement relationship of the proposed numerical model is found of a good agreement with that of the published experimental results. Evidence shows that load-displacement curve obtained fro

... Show More
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
FINITE ELEMENT ANALYSIS OF STRIP FOOTING RESTING ON GIBSON-TYPE SOIL BY USING MATLAB
...Show More Authors

This research presents a method of using MATLAB in analyzing a nonhomogeneous soil (Gibson-type) by
estimating the displacements and stresses under the strip footing during applied incremental loading
sequences. This paper presents a two-dimensional finite element method. In this method, the soil is divided into a number of triangle elements. A model soil (Gibson-type) with linearly increasing modulus of elasticity with depth is presented. The influences of modulus of elasticity, incremental loading, width of footing, and depth of footing are considered in this paper. The results are compared with authors' conclusions of previous studies.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
International Journal Of Inventive Engineering And Science,
Increase the Capacity Amount of Data Hiding to Least Significant BIT Method
...Show More Authors

Publication Date
Wed Apr 05 2023
Journal Name
Journal Of Engineering
Effect of Nb Addition on Hardness and Wear Resist of Cu-Al-Ni Shape Memory Alloy Fabricated By Powder Metallurgy
...Show More Authors

Cu-Al-Ni shape memory alloy specimens has been fabricated using powder metallurgy technique with tube furnace and vacuum sintering environment , three range of Nb powder weight percentage (0.3,0.6,0.9)% has been added. Micro hardness and sliding wear resist has been tested followed by X-ray diffraction, scanning electron microscope (SEM) and energy dispersive X-ray spectroscope (EDX) for micro structure observation. The experimental test for the samples has showed that the increase of Nb powder weight percentage in the master alloy has a significant effect on increasing the hardness and decreasing the wear resist therefore it will enhance the mechanical properties for this alloy.

View Publication Preview PDF
Crossref