The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in permeability prediction and compared its results with the flow zone indicator methods for a carbonate heterogeneous Iraqi formation. The methodology of the research can be Summarized by permeability was estimated by using two methods: Flow zone indicator and Artificial intelligence, two reservoir models are built, where the difference between them is in permeability method estimation, and the simulation run will be conducted on both of the models, and the permeability estimation methods will be examined by comparing their effect on the model history matching. The results showed that the model with permeability predicted by using artificial intelligence matched the observed data for different reservoir responses more accurately than the model with permeability predicted by the flow zone indicator method. That conclusion is represented by good matching between observed data and simulated results for all reservoir responses such for the artificial intelligence model than the flow zone indicator model.
The study employs Critical Discourse Analysis (CDA) to analyze how technological discourses are influenced by AI-generate d English texts. The research marries Fairclough’s three-dimensional discourse analysis, Van Dijk’s socio-cognitive approach, and Corpus-Assisted Discourse Studies (CADS) in the use of mixed-methods research, integrating primarily qualitative analysis with quantitative corpus-based data, to perform a thorough analysis of twenty AI-produced English texts. The findings identify the sophisticated linguistic mechanisms through which AI language employs modality, nominalization, passive voice, and interdiscursive blending to normalize and legitimize dominant contemporary ideologies. These mechanisms serve to legitimize te
... Show MoreBrain Fingerprinting (BF) is one of the modern technologies that rely on artificial intelligence in the field of criminal evidence law. Brain information can be obtained accurately and reliably in criminal procedures without resorting to complex and multiple procedures or questions. It is not embarrassing for a person or even violates his human dignity, as well as gives immediate and accurate results. BF is considered one of the advanced techniques related to neuroscientific evidence that relies heavily on artificial intelligence, through which it is possible to recognize whether the suspect or criminal has information about the crime or not. This is done through Magnetic Resonance Imaging (EEG) of the brain and examining
... Show MoreSmear zone is usually formed around the prefabricated vertical drains (PVD’s) due to mandrel driving. The geotechnical properties of the soil in this zone exhibit significant changes that affect the performance of the PVD’s. The most relevant property in this respect is the coefficient of permeability. So far, no serious attention is paid to investigate the effects of shearing under large shear strains on the geotechnical properties of the soft soil in Fao region. In this study, an extensive laboratory testing program was conducted to assess the characteristics of the smear zone with an emphasis on the permeability coefficient of Fao soft soil. The results show that the permeability of the smear zone is about 70% of
... Show MoreBearing capacity of soil is an important factor in designing shallow foundations. It is directly related to foundation dimensions and consequently its performance. The calculations for obtaining the bearing capacity of a soil needs many varying parameters, for example soil type, depth of foundation, unit weight of soil, etc. which makes these calculation very variable–parameter dependent. This paper presents the results of comparison between the theoretical equation stated by Terzaghi and the Artificial Neural Networks (ANN) technique to estimate the ultimate bearing capacity of the strip shallow footing on sandy soils. The results show a very good agreement between the theoretical solution and the ANN technique. Results revealed that us
... Show MoreAI in teaching English is reshaping language learning. While interest in AI-supported education is growing worldwide, research in this area is still emerging in Iraq. This review synthesizes empirical AI-based intervention studies to enhance English language learning in Iraqi higher education, and the perceptions of stakeholders regarding AI tools in language instruction. The reviewed intervention studies, comprising studies employed different AI platforms to support grammar instruction, speaking fluency, writing feedback, and pragmatic competence. These interventions yielded improvements in learners’ performance, motivation, and communicative confidence. In parallel, perception-focused studies revealed positive attitudes toward A
... Show More