Preferred Language
Articles
/
VBZ9hogBVTCNdQwC93i0
Studying the Effect of Permeability Prediction on Reservoir History Matching by Using Artificial Intelligence and Flow Zone Indicator Methods
...Show More Authors

The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in permeability prediction and compared its results with the flow zone indicator methods for a carbonate heterogeneous Iraqi formation. The methodology of the research can be Summarized by permeability was estimated by using two methods: Flow zone indicator and Artificial intelligence, two reservoir models are built, where the difference between them is in permeability method estimation, and the simulation run will be conducted on both of the models, and the permeability estimation methods will be examined by comparing their effect on the model history matching. The results showed that the model with permeability predicted by using artificial intelligence matched the observed data for different reservoir responses more accurately than the model with permeability predicted by the flow zone indicator method. That conclusion is represented by good matching between observed data and simulated results for all reservoir responses such for the artificial intelligence model than the flow zone indicator model.

Scopus Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
Dental Hypotheses
Revolutionizing Systematic Reviews and Meta-analyses: The Role of Artificial Intelligence in Evidence Synthesis
...Show More Authors

View Publication
Scopus (20)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Engineering
Prediction of Municipal Solid Waste Generation Models Using Artificial Neural Network in Baghdad city, Iraq
...Show More Authors

The importance of Baghdad city as the capital of Iraq and the center of the attention of delegations because of its long history is essential to preserve its environment. This is achieved through the integrated management of municipal solid waste since this is only possible by knowing the quantities produced by the population on a daily basis. This study focused to predicate the amount of municipal solid waste generated in Karkh and Rusafa separately, in addition to the quantity produced in Baghdad, using IBM SPSS 23 software. Results that showed the average generation rates of domestic solid waste in Rusafa side was higher than that of Al-Karkh side because Rusafa side has higher population density than Al-Karkh side. T

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Sat Dec 17 2022
Journal Name
Applied Sciences
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 a

... Show More
View Publication
Scopus (2)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Mon Nov 01 2021
Journal Name
Energy Reports
Global solar radiation prediction over North Dakota using air temperature: Development of novel hybrid intelligence model
...Show More Authors

View Publication
Scopus (78)
Crossref (79)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Prediction of Ryznar Index for the treated water from WTPs on Al-Karakh side of Baghdad City using Artificial Neural Network (ANN) technique
...Show More Authors

In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respectively. For

... Show More
Publication Date
Wed Jan 01 2020
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees20
Studying the effect of the annealing on Ag2Se thin film
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Dec 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Permeability Prediction of Un-Cored Intervals Using FZI Method and Matrix Density Grouping Method: A Case Study of Abughirab Field/Asmari FM., Iraq
...Show More Authors

Knowledge of permeability is critical for developing an effective reservoir description. Permeability data may be calculated from well tests, cores and logs. Normally, using well log data to derive estimates of permeability is the lowest cost method. This paper will focus on the evaluation of formation permeability in un-cored intervals for Abughirab field/Asmari reservoir in Iraq from core and well log data. Hydraulic flow unit (HFU) concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir quality index (RQI). Both measures are based on porosity and permeability of cores. It is assumed that samples with similar FZI values belong to the same HFU. A generated method is also used to calculate permea

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 27 2024
Journal Name
Frontiers In Education
The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad
...Show More Authors

The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional quality.

... Show More
View Publication Preview PDF
Publication Date
Wed Nov 27 2024
Journal Name
Frontiers In Education
The impact of using artificial intelligence techniques in improving the quality of educational services/case study at the University of Baghdad
...Show More Authors

The utilization of artificial intelligence techniques has garnered significant interest in recent research due to their pivotal role in enhancing the quality of educational offerings. This study investigated the impact of employing artificial intelligence techniques on improving the quality of educational services, as perceived by students enrolled in the College of Pharmacy at the University of Baghdad. The study sample comprised 379 male and female students. A descriptive-analytical approach was used, with a questionnaire as the primary tool for data collection. The findings indicated that the application of artificial intelligence methods was highly effective, and the educational services provided to students were of exceptional

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Jul 01 2019
Journal Name
Journal Of Educational And Psychological Researches
The Effect of the Addie and Shayer Model on the Achievement of Fifth Grade Students and their Attitudes towards History: The Effect of the Addie and Shayer Model on the Achievement of Fifth Grade Students and their Attitudes towards History
...Show More Authors

Abstract

The current research aims to examine the effect of the Adi and Shayer model on the achievement of fifth-grade students and their attitudes toward history. To achieve the research objective, the researcher has adopted two null hypotheses. 1) there is no statistically significant difference at the level of (0.05) between the average score of students of the experimental group who study the history of Europe and modern American history according to the model of Addie and Shayer, and the average scores of the students of the control group who study the same subjects according to the traditional method in the test of post-achievement. 2) There was no statistically significant difference at the level (

... Show More
View Publication Preview PDF