<span lang="EN-US">In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, and industry. In this paper, the physical prototype of a proposed self-balancing platform that described the self-balancing attitude in the (X-axis, Y-axis, or biaxial) under the influence of road disturbance has been introduced. In the physical prototype, the inertial measurement unit (IMU) sensor will sense the disturbance in (X-axis, Y-axis, and biaxial). With the determined error, the corresponding electronic circuit, DC servo motors, and the Arduino software, the platform overcame the tilt angle(disturbance). Optimization of the proportional-integral-derivative (PID) controllers’ coefficients by the genetic algorithm method effectively affected the performance of the platform, as the platform system is stable and the platform was able to compensate for the tilt angle in (X-axis, Y-axis, and both axes) and overcome the error in a time that does not exceed four seconds. Therefore, a proposed self-balancing platform’s physical prototype has a high balancing accuracy and meets operational requirements despite the platform’s simple design.</span>
Background: Considering the antioxidant, anti-inflammatory, and antimicrobial properties of green tea, this study aimed to evaluate the histopathological effect of the sulcular irrigation of green tea extract in the treatment of experimental gingivitis in rabbit.
Materials and methods: For this experimental study, 45 male rabbits, separated in two groups, control non- irrigated group (5rabbits) and study group (40 rabbits), gingivitis induced by ligatures was packed subgingivally in the lower right central incisors of the experimental group for seven days. Then, the animals were randomly designated to two irrigated groups (20 rabbits
... Show MoreHas been studied both processes Almetzaz and extortion of a substance Alklanda Maysan different amounts of Alcaúlan Guy 70% alcohol solution using the method when the wavelength
We study the physics of flow due to the interaction between a viscous dipole and boundaries that permit slip. This includes partial and free slip, and interactions near corners. The problem is investigated by using a two relaxation time lattice Boltzmann equation with moment-based boundary conditions. Navier-slip conditions, which involve gradients of the velocity, are formulated and applied locally. The implementation of free-slip conditions with the moment-based approach is discussed. Collision angles of 0°, 30°, and 45° are investigated. Stable simulations are shown for Reynolds numbers between 625 and 10 000 and various slip lengths. Vorticity generation on the wall is shown to be affected by slip length, angle of incidence,
... Show MoreThis work presents the use of laser diode in the fiber distributed data interface FDDI networks. FDDI uses optical fiber as a transmission media. This solves the problems resulted from the EMI, and noise. In addition it increases the security of transmission. A network with a ring topology consists of three computers was designed and implemented. The timed token protocol was used to achieve and control the process of communication over the ring. Nonreturn to zero inversion (NRZI) modulation was carried out as a part of the physical (PHY) sublayer. The optical system consists of a laser diode with wavelength of 820 nm and 2.5 mW maximum output power as a source, optical fiber as a channel, and positive intrinsic negative (PIN) photodiode
... Show MoreNatural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL) from (1.1*109) to (4.7*109). The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm) and diameter (30mm). The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm), sharp-edge and
... Show MoreThis research is one of the public research aimed at identifying the communication habits and the implications of the content on the communication process, especially as the audience of specialized media is often characterized by effectiveness, depth and active in tracking the media message and interaction with its content. It means such audience is a positive, very active, dynamic, and very alert audience driven by his interests and psychological needs to watch specific programs meet his desires.
This satisfaction can only be achieved through the use of specialized media capable of producing programs that will communicate and interact between the ideas you present and this audience.
The phenomenon of specialized satellit
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec
Vehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show More