<span lang="EN-US">In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, and industry. In this paper, the physical prototype of a proposed self-balancing platform that described the self-balancing attitude in the (X-axis, Y-axis, or biaxial) under the influence of road disturbance has been introduced. In the physical prototype, the inertial measurement unit (IMU) sensor will sense the disturbance in (X-axis, Y-axis, and biaxial). With the determined error, the corresponding electronic circuit, DC servo motors, and the Arduino software, the platform overcame the tilt angle(disturbance). Optimization of the proportional-integral-derivative (PID) controllers’ coefficients by the genetic algorithm method effectively affected the performance of the platform, as the platform system is stable and the platform was able to compensate for the tilt angle in (X-axis, Y-axis, and both axes) and overcome the error in a time that does not exceed four seconds. Therefore, a proposed self-balancing platform’s physical prototype has a high balancing accuracy and meets operational requirements despite the platform’s simple design.</span>
Somerset Maugham is known mainly as a novelist . This paper presents Maugham the dramatist . Many critics have found him a promising dramatist . He has written 30 plays , then he turns his back upon the theater and writes his autobiographical and most successful novel Of Human Bondage ( 1915) .
Maugham's writing is clear , precise , and simple . He is described as a realist who is keenly aware of human nature , its concentration and frustration . His only tragedy A Man of Honour is a play in 4 acts . This paper concentrates mainly on this play to show Maugham as a dramatist and to show his concept of " honour " .
&nb
... Show MoreProsthetic is an artificial tool that replaces a member of the human frame that is absent because of ailment, damage, or distortion. The current research activities in Iraq draw interest to the upper limb discipline because of the growth in the number of amputees. Thus, it becomes necessary to increase researches in this subject to help in reducing the struggling patients. This paper describes the design and development of a prosthesis for people able and wear them from persons who have amputation in the hands. This design is composed of a hand with five fingers moving by means of a gearbox ism mechanism. The design of this artificial hand has 5 degrees of freedom. This artificial hand works based on the principle of &n
... Show MoreFace recognition is a crucial biometric technology used in various security and identification applications. Ensuring accuracy and reliability in facial recognition systems requires robust feature extraction and secure processing methods. This study presents an accurate facial recognition model using a feature extraction approach within a cloud environment. First, the facial images undergo preprocessing, including grayscale conversion, histogram equalization, Viola-Jones face detection, and resizing. Then, features are extracted using a hybrid approach that combines Linear Discriminant Analysis (LDA) and Gray-Level Co-occurrence Matrix (GLCM). The extracted features are encrypted using the Data Encryption Standard (DES) for security
... Show MoreModeling the microclimate of a greenhouse located in Baghdad under its weather conditions to calculate the heating and cooling loads by computer simulation. Solar collectors with a V-corrugated absorber plate and an auxiliary heat source were used as a heating system. A rotary silica gel desiccant dehumidifier, a sensible heat exchanger, and an evaporative cooler were added to the collectors to form an open-cycle solar assisted desiccant cooling system. A dynamic model was adopted to predict the inside air and the soil surface temperatures of the greenhouse. These temperatures are used to predict the greenhouse heating and cooling loads through an energy balance method which takes into account the soil heat gain. This is not included in
... Show MoreIn this paper, a numerical model for fluid-structure interaction (FSI) analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM) theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM) to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the
... Show MoreTo maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show MoreDust and bird residue are problems impeding the operation of solar street lighting systems, especially in semi-desert areas, such as Iraq. The system in this paper was designed and developed locally using simple and inexpensive materials. The system runs automatically. It Connects to solar panels used in solar street lighting, and gets the required electricity from the same solar system. Solar panels are washed with dripping water in less than half a minute by this system. The cleaning period can also be controlled. It can also control, sensing the amount of dust the system operates. The impact of different types of falling dust on panels has also been studied. This was collected from different winds and studied their impact o
... Show MoreAcne vulgaris is a very common, chronic disorder, involving inflammation of the pilosebaceous units that can be varied in presentation and difficult to treat. Inflammatory acne may yield both scarring and pigmentary changes so early and adequate therapy will, in all cases, decrease its severity and may entirely suppress this disease. Serratiopeptidase has anti-inflammatory, anti-edemic and fibrinolytic activity and acts rapidly on localized inflammation. Serratiopeptidase was added in aim to hasten acne resolution. During March to July 2010, A comparative study for a 50 healthy patient suffering from acne was divided into 2 groups: 1st group treated by common acne modalities and the 2nd one with same modalities
... Show MoreSkin drug administration is the method used to provide drugs for local or systemic therapy, which is recognized for clinical usage. It is the third-largest method of medication delivery, after only intravenous administration and oral administration. Using a transdermal delivery method makes the administration easy, and blood concentration and adverse effects can be reduced. A microneedle is a micron-sized needle with a short height of no more than 500 micrometers and a width of no more than 50 micrometers. The needle comes into contact with the epidermal layer of the skin before it gets to the dermal layer, where there is no discomfort. Several materials, such as metals, inorganic, and polymer materials, are used to create microneed
... Show More