<span lang="EN-US">In the last years, the self-balancing platform has become one of the most common candidates to use in many applications such as flight, biomedical fields, and industry. In this paper, the physical prototype of a proposed self-balancing platform that described the self-balancing attitude in the (X-axis, Y-axis, or biaxial) under the influence of road disturbance has been introduced. In the physical prototype, the inertial measurement unit (IMU) sensor will sense the disturbance in (X-axis, Y-axis, and biaxial). With the determined error, the corresponding electronic circuit, DC servo motors, and the Arduino software, the platform overcame the tilt angle(disturbance). Optimization of the proportional-integral-derivative (PID) controllers’ coefficients by the genetic algorithm method effectively affected the performance of the platform, as the platform system is stable and the platform was able to compensate for the tilt angle in (X-axis, Y-axis, and both axes) and overcome the error in a time that does not exceed four seconds. Therefore, a proposed self-balancing platform’s physical prototype has a high balancing accuracy and meets operational requirements despite the platform’s simple design.</span>
An environmentally begnin second derivative spectrometric approach was developed for the estimation of the dissociation constants pKa(s) of metformin, a common anti-diabetic drug. The ultraviolet spectra of the aqueous solution of metformin were measured at different acidities, then the second derivative of each spectrum was graphed. The overlaid second derivative graphs exhibited two isobestic points at 225.5 nm and 244 nm pointing out to the presence of two dissociation constants for metformin pKa1 and pKa2, respectively. The method was validated by evaluating the reproducibility of the acquired results by comparing the estimated values of the dissociation constants of two different strategies that show excellent matching. As we
... Show MoreAs one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show MoreA ‘locking-bolt’ demountable shear connector (LBDSC) is proposed to facilitate the deconstruction and reuse of steel-concrete composite structures, in line with achieving a more sustainable construction design paradigm. The LBDSC is comprised of a grout-filled steel tube and a geometrically compatible partially threaded bolt. The latter has a geometry that ‘locks’ the bolt in compatible holes predrilled on the steel flange and eliminates initial slip and construction tolerance issues. The structural behaviour of the LBDSC is evaluated through nine pushout tests using a horizontal test setup. The effects of the tube thickness, strength of concrete slab, and strength of infilled grout on the shear resistance, initial stiffness, and du
... Show MoreThe objectives of the study were to identify the incidence rate and characteristics of adverse drug events (ADEs) in nursing homes (NHs) using the ADE trigger tool and to evaluate the relationships between resident and facility work system factors and incidence of ADEs using the System Engineering Initiative for Patient Safety (SEIPS) model. The study used 2 observational quantitative methods, retrospective resident chart extraction, and surveys. The participating staff included Directors of nursing, registered nurses, certified nurse assistants (CNAs). Data were collected from fall 2016 to spring 2017 from 11 NHs in 9 cities in Iowa. Binary logistic regression with generalized estimated equations was used to measure the association
... Show MoreTo determine the abilities of salivary E‐cadherin to differentiate between periodontal health and periodontitis and to discriminate grades of periodontitis.
E‐cadherin is the main protein responsible for maintaining the integrity of epithelial‐barrier function. Disintegration of this protein is one of the events associated with the destructive forms of periodontal disease leading to increase concentration of E‐cadherin in the oral biofluids.
A total of 63 patients with periodontitis (case) and 35
In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficie
... Show MoreA harvested prey-predator model with infectious disease in preyis investigated. It is assumed that the predator feeds on the infected prey only according to Holling type-II functional response. The existence, uniqueness and boundedness of the solution of the model are investigated. The local stability analysis of the harvested prey-predator model is carried out. The necessary and sufficient conditions for the persistence of the model are also obtained. Finally, the global dynamics of this model is investigated analytically as well as numerically. It is observed that, the model have different types of dynamical behaviors including chaos.
A gantry robot is one of the most common types of industrial robots with linear movement. This type of robot is also known as a Cartesian or linear robot. It is an automated industrial system that moves along linear paths, enabling it to create a 3D envelope of the space in which it operates. A robot of this type has a standardised configuration process because it can have several sets of axes, such as X, Y and Z. The gantry robot picks up products from several places, so it can search through various locations. Afterwards, it carefully deposits the products on a conveyor belt for the next stage of the procedure or final shipment. This integration enables continuous and automated material flow
... Show More