In the present work, a first-row divalent d-transition metal obtained from curcumin(Curc) and L-3,4-dihydroxyphenylalanin(L-dopa)have been synthesized which their complexes and characterized by C.H.N, conductance, spectral methods: FT-IR, Ultra–Visible. Magneto-chemical measurements, molar conductance ΛM (1×10−3 mol/L in DMSO):36- 0.84 ohm-1.cm2.mol-1 (non-electrolyte). The data shows that the complexes have the structure [M((II))-(Curc)-(L-dopa)] system. Electronic and magnetic data suggest an octahedral geometry for all complexes in which the (L-dopa) and curcumin act as bidentate ligands. Curcumin coordinated to the metal ions M (II) through the lone pair of electrons of oxygen in 2(C=O) groups. The (L-dopa) coordinated to M (II) as a mono negative bidentate ligand through the oxygen atom of the carboxylate and the (N), atom of the (-NH2) groups. The general formula was given for the prepared mixed ligand complexes as [M (Cur)(L-dopa)2 ]. M= Mn (II), Fe (II),Co(II),Ni(II),Cu (II), Zn(II), Cd(II) and Hg(II).The ligands and their metal complexes were screened for their antimicrobial activity klebsiella pneumonie,and Staphylococcus aureus, and Candida albicans. Metal chelates showed very good antimicrobial activity than their parent curcumin-and (L- dopa).
In this article four samples of HgBa2Ca2Cu2.4Ag0.6O8+δ were prepared and irradiated with different doses of gamma radiation 6, 8 and 10 Mrad. The effects of gamma irradiation on structure of HgBa2Ca2Cu2.4Ag0.6O8+δ samples were characterized using X-ray diffraction. It was concluded that there effect on structure by gamma irradiation. Scherrer, crystallization, and Williamson equations were applied based on the X-ray diffraction diagram and for all gamma doses, to calculate crystal size, strain, and degree of crystallinity. I
... Show More