Key-frame selection plays an important role in facial expression recognition systems. It helps in selecting the most representative frames that capture the different poses of the face. The effect of the number of selected keyframes has been studied in this paper to find its impact on the final accuracy of the emotion recognition system. Dynamic and static information is employed to select the most effective key-frames of the facial video with a short response time. Firstly, the absolute difference between the successive frames is used to reduce the number of frames and select the candidate ones which then contribute to the clustering process. The static-based information of the reduced sets of frames is then given to the fuzzy C-Means algorithm to select the best C-frames. The selected keyframes are then fed to a graph mining-based facial emotion recognition system to select the most effective sub-graphs in the given set of keyframes. Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the results show that the proposed method can effectively capture the keyframes that give the best accuracy with a mean response time equals to 2.89.
The current study includes 144 samples were 106 bacterial samples belonging to the clinical sources, 38 bacterial samples belonging to the environmental sources to investigate the presence of bacteria P. aeruginosa. The results of diagnosis clarified that there are 45 bacterial isolates belonging to the bacterium P. aeruginosa The examination of the sensitivity of all bacterial isolates was done for elected 45 isolation towards the 11 antibiotic by spread method on the dishes. The results showed that the resistance ratio toward Cefixim, Cefotaxim, Tetracycline, Amoxicillin, Cloxacillin, Methicillin, Erythromycin and Naldixic acid was 77.7, 73.3, 84.4, 82.2, 80, 77.7, 77.7 and 73.3 respectively, While most isolates were sensitive to all o
... Show MoreThis study aimed to know the impact of the capital structure measured by the ratio of financing to short-term capital and the ratio of financing to long-term capital on the profitability of companies, as measured by the rate of return on assets and the rate of return on equity. The study was applied to industrial sector companies listed in the Iraq Stock Exchange. The financial number of (14) companies, and (4) companies were selected that met the conditions for selecting the study sample. The study methodology relies on the analytical method as it is more appropriate to the nature, scope and objectives of the study, and the ready-made statistical program "SPSS" will be used to analyze the relationships and influence between the
... Show MoreThe research seeks to identify the impact of fraud detection skills in the settlement of compensatory claims for the fire and accident insurance portfolio and the reflection of these skills in preventing and reducing the payment of undue compensation to some who seek profit and enrichment at the expense of the insurance contract. And compensatory claims in the portfolio of fire and accident insurance in the two research companies, which show the effect and positive return of the detection skills and settlement of the compensation on the amount of actual compensation against the claims inflated by some of the insured, The research sample consisted of (70) respondents from a community size (85) individuals between the director and assistan
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreThe dependable and efficient identification of Qin seal script characters is pivotal in the discovery, preservation, and inheritance of the distinctive cultural values embodied by these artifacts. This paper uses image histograms of oriented gradients (HOG) features and an SVM model to discuss a character recognition model for identifying partial and blurred Qin seal script characters. The model achieves accurate recognition on a small, imbalanced dataset. Firstly, a dataset of Qin seal script image samples is established, and Gaussian filtering is employed to remove image noise. Subsequently, the gamma transformation algorithm adjusts the image brightness and enhances the contrast between font structures and image backgrounds. After a s
... Show More