Key-frame selection plays an important role in facial expression recognition systems. It helps in selecting the most representative frames that capture the different poses of the face. The effect of the number of selected keyframes has been studied in this paper to find its impact on the final accuracy of the emotion recognition system. Dynamic and static information is employed to select the most effective key-frames of the facial video with a short response time. Firstly, the absolute difference between the successive frames is used to reduce the number of frames and select the candidate ones which then contribute to the clustering process. The static-based information of the reduced sets of frames is then given to the fuzzy C-Means algorithm to select the best C-frames. The selected keyframes are then fed to a graph mining-based facial emotion recognition system to select the most effective sub-graphs in the given set of keyframes. Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the results show that the proposed method can effectively capture the keyframes that give the best accuracy with a mean response time equals to 2.89.
Collapsing building structures during recent earthquakes, especially in Northern and Eastern Kurdistan, including the 2003 earthquake in Cewlig; the 2011 earthquake in Van; and the 2017 earthquake near Halabja province, has raised several concerns about the safety of pre-seismic code buildings and emergency facilities in Erbil city. The seismic vulnerability assessment of the hospital buildings as emergency facilities is one of the necessities which have a critical role in the recovery period following earthquakes. This research aims to study in detail and to extend the present knowledge about the seismic vulnerability of the Rizgary public hospital building in Erbil city, which was constructed before releasing the seism
... Show MoreBackground: Radiologic evaluation of breast lesions is being achieved through several imaging modalities. Mammography has an established role in breast cancer screening and diagnosis. Still however, it shows some limitations particulary in dense breast.
Methods : Magnetic resonance imaging is an attractive tool for the diagnosis of breast tumors1 and the use of magnetic resonance imaging of the breast is rapidly increasing as this technique becomes more widely available.1 As an adjunct to mammography and ultrasound, MRI can be a valuable addition to the work-up of a breast abnormality. MRI has the advantages of providing a three-dimensional view of the breast, performing wit
... Show MoreThe nuclear size radii, density distributions and elastic electron scattering charge form factors for Fluorine isotopes (17,19,20,24,26F) were studied using the radial wave functions (WF) of harmonic-oscillator (HO) potential and free mean field described by spherical Hankel functions (SHF) for the core and the valence parts, respectively for all aforementioned isotopes. The parameters for HO potential (size parameter ) and SHF were chosen to regenerate the available experimental size radii. It was found that using spherical Hankel functions in our work improved the calculated results quantities in comparison with empirical data.
The major cause of destruction during vertical vibration is the failure of the soil structure. The soil may fail due to loss of strength during continues vibration. The saturated sandy soil losses strength due to an increase in pore pressure, this phenomenon is called "liquefaction". Piled foundations are usually adopted as a foundation solution in potentially liquefiable soil under dynamic loading. In this research, 3D finite element model using PLAXIS Software was employed for pile foundation in saturated sandy soil. The results show the acceleration mobilization and velocity on the footing increases with increasing the intensity of dynamic loads and it becomes zero at maximum value of vertical settlement which indicates the end of the ti
... Show MoreMicrobial antibiotics resistance is considered a serious health issue in the Middle East and developing countries. In this study, the Fe2O3 nanoparticles was prepared chemically, and the particles size and shape were analyzed by using Scan electron microscope (SEM) and X-Ray diffraction (XRD). Different concentration of Fe2O3 nanoparticles were used and examined on E.coli and S. aureus. Using liquid dilution and in vitro cytotoxicity assay by microplate toxicity test (MTT). The microbial cell metabolic activity was measured on gram-negative, gram-positive bacteria and fungi after treating with different concentrations of Fe2O3 nanoparticl
... Show MoreThe effect of mixed corrosion inhibitors in cooling system was evaluated by using carbon steel specimens and weight loss analysis. The carbon steel specimens immersed in mixture of sodium phosphate (Na2 HPO4) used as corrosion inhibitor and sodium glocunate (C6 H11 NaO7) as a scale dispersant at different concentrations (20,40, 60, 80 ppm) and at different temperature (25,50,75 and 100)ºC for (1-5) days. The corrosion inhibitors efficiency was calculated by using uninhibited and inhibited water to give 98.1%. The result of these investigations indicate that the corrosion rate decreases with the increase the corrosion inhibitors concentration at 80 ppm and at 100ºC for 5 days, (i.e,
... Show MoreThis paper presents a novel idea as it investigates the rescue effect of the prey with fluctuation effect for the first time to propose a modified predator-prey model that forms a non-autonomous model. However, the approximation method is utilized to convert the non-autonomous model to an autonomous one by simplifying the mathematical analysis and following the dynamical behaviors. Some theoretical properties of the proposed autonomous model like the boundedness, stability, and Kolmogorov conditions are studied. This paper's analytical results demonstrate that the dynamic behaviors are globally stable and that the rescue effect improves the likelihood of coexistence compared to when there is no rescue impact. Furthermore, numerical simul
... Show More
Nano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show More