Face recognition and identity verification are now critical components of current security and verification technology. The main objective of this review is to identify the most important deep learning techniques that have contributed to the improvement in the accuracy and reliability of facial recognition systems, as well as highlighting existing problems and potential future research areas. An extensive literature review was conducted with the assistance of leading scientific databases such as IEEE Xplore, ScienceDirect, and SpringerLink and covered studies from the period 2015 to 2024. The studies of interest were related to the application of deep neural networks, i.e., CNN, Siamese, and Transformer-based models, in face recognition and identity verification systems. Deep learning-based approaches have been shown through cross-sectional studies to improve recognition accuracy under diverse environmental and demographic conditions. Anti-counterfeiting (Anti-Spoofing) and real presence detection features integrated into systems have likewise enhanced system security against advanced attacks such as 3D masks, false images and videos, and Deepfake technology. Future trends point to the need to develop deep, multi-sensory and interpretable learning models, and adopt learning strategies based on limited data, while adhering to legal and ethical frameworks to ensure fairness andtransparency.
Sphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AUR1 gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given
... Show MoreRecently, there has been an increasing advancement in the communications technology, and due to the increment in using the cellphone applications in the diverse aspects of life, it became possible to automate home appliances, which is the desired goal from residences worldwide, since that provides lots of comfort by knowing that their appliances are working in their highest effi ciency whenever it is required without their knowledge, and it also allows them to control the devices when they are away from home, including turning them on or off whenever required. The design and implementation of this system is carried out by using the Global System of Mobile communications (GSM) technique to control the home appliances – In this work, an ele
... Show MoreIn this paper a new method is proposed to perform the N-Radon orthogonal frequency division multiplexing (OFDM), which are equivalent to 4-quadrature amplitude modulation (QAM), 16-QAM, 64-QAM, 256-QAM, ... etc. in spectral efficiency. This non conventional method is proposed in order to reduce the constellation energy and increase spectral efficiency. The proposed method gives a significant improvement in Bit Error Rate performance, and keeps bandwidth efficiency and spectrum shape as good as conventional Fast Fourier Transform based OFDM. The new structure was tested and compared with conventional OFDM for Additive White Gaussian Noise, flat, and multi-path selective fading channels. Simulation tests were generated for different channels
... Show MoreFuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreThrough his female characters, Walt Disney was able to reflect the
development of the general outlook upon women in the Western world over a period
of sixty years.
This paper sheds light in how the cartoon characters changed in their reaction
to problems and means of solving them from the 30s through to the 90s of the
previous century. The main characters will be seen according to the films’ dates of
production and release.