Biofilm formation is one of the biggest challenges of scientists. Role of heavy metals in forming biofilm is not clear enough. Here, the effect of lead on biofilm formation by Bacillus spp. isolated from soil in terms of biofilm formation and remove was studied. In present study, 10 isolates of Bacillus spp were isolated from soil. The ability of all isolates to form biofilm was evaluated. The effect of lead on biofilm formation was studied by adding lead (pb) before forming biofilm. In another experiment the lead was added after biofilm formation to study the effect of lead on biofilm remove. The current study, showed the ability of all studied isolates to form biofilm. Maximum biofilm formation by Bacillus spp isolate number 8 (B8) followed by B1 and B3. The lowest biofilm formation was found in case of isolate 4 (B4). The lead (50 ppm) reduced biofilm formation by B8, B1 and B3 isolates when the lead was used before biofilm formation (P <0.05). In another experiment the lead (50 ppm) was added after biofilm formation, it was observed that the biofilm formation was higher when the lead was added (after biofilm formation) as compared with control (serial distilled water) and the difference was significant (P<0.05). It can be concluded that the lead effect negatively on biofilm formation and positively on stability of biofilm.
Abstract: Plastic pollution is a major issue of the current century. This waste is found in seas, freshwater, lakes, rivers, coastal areas, and soil. In this article, this article discusses the various sources of plastic pollution, including the manufacturing process of plastics and the addition of materials to improve their properties, as well as the use of single-use plastics that are not recyclable, in addition to burning and illegal waste disposal in the open. The impact on public health is through human exposure to toxins from plastics in the environment directly through inhaling dust and fumes, consuming contaminated food and drink, and skin contact. Indirectly, when marine creatures consume microplastics, they will find their way
... Show MoreTen isolates were collected from different clinical sources from laboratory in medicine century . These isolates were belonging to the genus Salmonella depending on morphological and biochemical tests . The antibiotic scussptibility tests against 10 antibiotics were examined , and it was found that the 60% isolates have multiple resistant to antibiotic ,(70%) of isolates were resistant to ampicillin,(50%) were resistant to augmentin ,(40%) were resistant to ceftriaxone ,(20%) were resistant to cefotaxime and (10%) were resistant to ciprofloxacin and tetracycline while all isolates showed sensitivity to piperacillin, imipenem, amikacin and erythromycin .The ability of Salmonela isolates to produce ?-lactamase enzymes were tested usin
... Show MoreIn accordance with epidemic COVID-19, the elevated infection rates, disinfectant overuse and antibiotic misuse what led to immune suppression in most of the population in addition to genotypic and phenotypic alterations in the microorganisms, so a great need to reevaluate the genetic determinants that responsible for bacterial community (biofilm) has been raised. A total of 250 clinical specimens were obtained from patients in Baghdad hospitals and streaked on Mannitol salt agar medium. The results revealed that 156 isolates appeared as round yellow colonies, indicating that they were mostly identified as Staphylococcus aureus from 250 specimens. The antibiotic resistance pattern of the isolates for methicillin 37.17% (n=58), Amoxic
... Show MoreBacteria strain H7, which produces flocculating substances, was isolated from the soil of corn field at the College of Agriculture in Abu-Ghrib/Iraq, and identified as Bacillus subtilis by its biochemical /physiological characteristics. The biochemical analysis of the partially purified bioflocculant revealed that it was a proteoglycan composed of 93.2 % carbohydrate and 6.1 % protein. The effects of bioflocculant dosage, temperature, pH, and different salts on the flocculation activity were evaluated. The maximum flocculation activity was observed at an optimum bioflocculant dosage of 0.2 mL /10 mL (49.6%). The bioflocculant had strong thermal stability within the range of 30-80 °C, and the flocculating activity was over 50 %. The biofloc
... Show MoreThe aim of studying the role of environmental taxation is to reduce or mitigate the problem of environmental pollution and obtain a clean environment. And the importance of research lies in the fact that environmental taxation is one of the basic tools to achieve environmental balance. As it is considered one of the sustainable economic tools that focuses on the concept of environmental taxes and fees. Therefore, the incentives stimulated institutions to invest in clean energy and use environmentally friendly machines. Through it, the rules of the competition are updated in favor of organizations that respect the environment so that they can obtain a green competitive advantage. And that the mai
... Show MoreThe wild populations of the vinegar fly Drosophila melanogaster Meigen from two regions in Baghdad , Saidiya and Tuwaitha were selected for this study to investigating the frequency of the dominant lethality , this parameter was investigated through fecundity and egg hatchability rate which considered as main indicator for the presence of mutation . The results showed that fecundity rate in Saidiya increased with time , so the lowest rate was 65.5 eggs per female in November and the highest was 87.4 eggs in May , the same results was observed for Tuwaitha except a significantly decrease in fecundity rate that was observed in May which was 42.7 eggs , as well as another significant differences between the two regions was observed in March
... Show MoreNanoparticles have gained considerable interest in recent times for oil recovery purposes owing to significant capabilities in wettability alteration of reservoir rocks. Wettability is a key factor controlling displacement efficiency and ultimate recovery of oil. The present study investigates the influence of zirconium (IV) oxide (ZrO2) and nickel (II) oxide (NiO) nanoparticles on the wetting preference of fractured (oil-wet) limestone formations. Wettability was assessed through SEM, AFM and contact angle. The potentials of the nanoparticles to alter oil-wet calcite substrates water wet, was experimentally tested at low nanoparticle concentrations (0.004–0.05 wt%). Quite similar behaviour was observed for both nanoparticles at the same
... Show More