The smart city concept has attracted high research attention in recent years within diverse application domains, such as crime suspect identification, border security, transportation, aerospace, and so on. Specific focus has been on increased automation using data driven approaches, while leveraging remote sensing and real-time streaming of heterogenous data from various resources, including unmanned aerial vehicles, surveillance cameras, and low-earth-orbit satellites. One of the core challenges in exploitation of such high temporal data streams, specifically videos, is the trade-off between the quality of video streaming and limited transmission bandwidth. An optimal compromise is needed between video quality and subsequently, rec
... Show MoreThis paper discusses a comparative study to relate parametric and non-parametric mode decomposition algorithms for response-only data. Three popular mode decomposition algorithms are included in this study: the Eigensystem Realization Algorithm with the Natural Excitation Technique (NExT-ERA) for the parametric algorithm, as well as the Principal Component Analysis (PCA) and the Independent Component Analysis (ICA) for the non-parametric algorithms. A comprehensive parametric study is provided for (i) different response types, (ii) excitation types, (iii) system damping, and (iv) sensor spatial resolution to compare the mode shapes and modal coordinates of using a 10-DOF building model. The mode decomposition results are also compared using
... Show MoreThe proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreBackground:
Face detection systems are based on the assumption that each individual has a unique face structure and that computerized face matching is possible using facial symmetry. Face recognition technology has been employed for security purposes in many organizations and businesses throughout the world. This research examines the classifications in machine learning approaches using feature extraction for the facial image detection system. Due to its high level of accuracy and speed, the Viola-Jones method is utilized for facial detection using the MUCT database. The LDA feature extraction method is applied as an input to three algorithms of machine learning approaches, which are the J48, OneR, and JRip classifiers. The experiment’s
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Image Fusion Using A Convolutional Neural Network
Endoscopy is a rapidly growing field of Neurosurgery, it is defined as the applying of endoscope to treat different conditions of brain pathology within cerebral ventricular system and beyond it, endoscopic procedures performed by using different equipment and recording system to make a better visualization enhancing the surgeon's view by increasing illumination and magnification to look around corner and to capture image on video or digital format for later studies.