ABSTRACT: BACKGROUND: Left ventricular hypertrophy is a significant risk factor for cardiovascular complications such as ischemic heart disease, heart failure, sudden death, atrial fibrillation, and stroke. A proper non-expensive tool is required for detection of this pathology. Different electrocardiographic (ECG) criteria were investigated; however, the results were conflicting regarding the accuracy of these criteria. OBJECTIVE: To assess the accuracy of three electrocardiographic criteria in diagnosis of left ventricular hypertrophy in adult patients with hypertension using echocardiography as a reference test. PATIENTS AND METHODS: This is a hospital-based cross sectional observational study which included 340 adult patients with a history of hypertension (240 patients with left ventricular hypertrophy and 100 patients without depending on Echocardiographic results). Three electrocardiographic criteria including Sokolow Lyon Voltage, Cornell voltage, and Cornell voltage duration were evaluated for their sensitivity and specificity in detection of left ventricular hypertrophy in those patients. RESULTS: Each of older ages (over 50 years) (OR= (OR=6.25, 95%CI=3.75-10.39, p<0.001), male gender (OR=0.58, 95% CI= 0.36-0.93, p= 0.018) and type 2 diabetes mellitus (OR=8.14, 95%CI= 4.04-16.41, p<0.001) were significantly associated with development of left ventricular hypertrophy in patients with hypertension. The sensitivity and specificity of Sokolow Lyon Voltage, Cornell voltage, and Cornell voltage duration were 17.5% and 96%; 13.33% and 97%; and 10% and 98%, respectively. CONCLUSION: Older ages, male gender, and type 2 diabetes mellitus can increase the risk of left ventricular hypertrophy in hypertensive patients. All the studied criteria have low sensitivity and high specificity in recognition of the left ventricular hypertrophy in patients with hypertension, with no advantage of definite criterion over the others.
Ficus (FIC) leaf extract used as corrosion inhibitor for carbon steel alloy (C.S) in two corrosive environments (saline and acidic) with four concentrations (1, 2, 3 and 4 ppm) at varied temperature range between (298-328 K) using electrochemical polarization measurements. The importance of this work focused on the use the green chemistry that is far from the chemical materials effect. The results of polarization presented the FIC inhibitor consider a mixed type (anodic and cathodic) inhibitor. Tafel curve used to evaluate the corrosion inhibition activity. In a saline medium, the best inhibitor efficiency reaches to (87%) in 2 ppm and IE% reach to (99%) for HCl medium inhibited by 1ppm. Langmuir isotherm obeys the study by thermodynamic pa
... Show MoreIn this paper, two meshless methods have been introduced to solve some nonlinear problems arising in engineering and applied sciences. These two methods include the operational matrix Bernstein polynomials and the operational matrix with Chebyshev polynomials. They provide an approximate solution by converting the nonlinear differential equation into a system of nonlinear algebraic equations, which is solved by using
This research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie
... Show MoreTwo locally isolated microalgae (Chlorella vulgaris Bejerinck and Nitzschia palea (Kützing) W. Smith) were used in the current study to test their ability to production biodiesel through stimulated in different nitrogen concentration treatments (0, 2, 4, 8 gl ), and effect of nitrogen concentration on the quantity of primary product (carbohydrate, protein ), also the quantity and quality of lipid. The results revealed that starvation of nitrogen led to high lipid yielding, in C. vulgaris and N. palea the lipid content increased from 6.6% to 40% and 40% to 60% of dry weight (DW) respectively.Also in C. vulgaris, the highest carbohydrate was 23% of DW from zero nitrate medium and the highest protein was 50% of DW in the treatment 8gl. Whil
... Show MoreCloud Computing is a mass platform to serve high volume data from multi-devices and numerous technologies. Cloud tenants have a high demand to access their data faster without any disruptions. Therefore, cloud providers are struggling to ensure every individual data is secured and always accessible. Hence, an appropriate replication strategy capable of selecting essential data is required in cloud replication environments as the solution. This paper proposed a Crucial File Selection Strategy (CFSS) to address poor response time in a cloud replication environment. A cloud simulator called CloudSim is used to conduct the necessary experiments, and results are presented to evidence the enhancement on replication performance. The obtained an
... Show MoreThis paper proposes two hybrid feature subset selection approaches based on the combination (union or intersection) of both supervised and unsupervised filter approaches before using a wrapper, aiming to obtain low-dimensional features with high accuracy and interpretability and low time consumption. Experiments with the proposed hybrid approaches have been conducted on seven high-dimensional feature datasets. The classifiers adopted are support vector machine (SVM), linear discriminant analysis (LDA), and K-nearest neighbour (KNN). Experimental results have demonstrated the advantages and usefulness of the proposed methods in feature subset selection in high-dimensional space in terms of the number of selected features and time spe
... Show More