A multistep synthesis was established for the preparation of a new vanillic acid-1, 2, 4-1triazole-3-thiol conjugate (
The pharmacophore 2-aminothiazole has an interesting role in pharmaceutical chemistry as this led to the synthesis of many types of compounds with diverse biological activity. Schiff base derivatives at the same time contribute to drug evolution importantly. In this review, the Schiff base derivatives of 2-aminothiazole formed and some of their metal complexes are being focused on, and the antimicrobial and anticancer activity of them is being illustrated.
A new Schiffbase derivative ligands [H4L1] and [H2L2] have been produced by condensed ophathaldehyde with ethylene diamine and [N1, N1'E, N1, N1'E)-N1, N1'-(1, 2-phenylenebis (methan-1-yl- 1ylidene)) diethane-1, 2-diamine] with 2-benzoyl benzoic acid. Schiffbase ligands have been separated and categorized by 1H, 13 C-NMR, (CHN) elemental analysis, UV-visible, mass spectroscopy and FTIR methods. Ten new coordination complexes were prepared and structurally diagnosed: [M(L1)Cl2] and [M2(L2)Cl2] where M(II) = Mn (II), Co(II), Ni(II), Cu(II) and Hg(II). The complexes have been typified by FTIR, UV-visble atomic absorption, molar conductance elemental analysis, and magnetic susceptibility. The details of the ligand (H4L1) compounds are getting a
... Show MoreBidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III),and Fe(III) of mixed-ligand complexes were structural explicate through moler conductance , [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.
Bidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III),and Fe(III) of mixed-ligand complexes were structural explicate through Moler conductance , [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.
This research included the preparation of 2-mercaptobenzoxazole (N1) by the reaction of ortho-aminophenol with carbon disulfide in an alcoholic potassium hydroxide solution. The 2-mercapto benzoxazole (N1) was then treated with hydrazine to obtain the 2-hydrazino benzoxazole (N2). A number of hydrazones (N3-N5) were prepared through the reaction of N2 with different benzaldehydes. The compound (N6) was also prepared whereby the ring closing of hydrazone (N3) using chloroacetylchloride, while the compound (N7) was prepared by treating 2-hydrazino benzoxazole with acetylacetone. When the compound (N1) was treated with formaldehyde, it afforded the compound (N8). Also, the N9 was obtained from the reaction of N1 with chloroacetic acid in th
... Show MoreTwo series of Schiff Bases and 2,3-disubstituted-1,3-thiazolidin-4-one derivatives were synthesized . Reaction of 2-mercaptobenzothiazole with α-chloro acetic acid gave compound[I]. Esterification of carboxylic moity of compound [I] , using absolute methanol in the presence of conc . H2SO4 yielded acorresebonding ester [II] , wich was condensation with hydrazine hydrate to give acid hydrazide [III] . The new Schiff bases [V]n were synthesized by reaction of acid hydrizide with dialdehyde [IV]n in the presence of glacial acetic acid . The thiazolidinone derivatives [VI]n have been obtained from the azomethines through the addition of thioglycolic acid . Their chemical structures have been confirmed by mel
... Show MoreObjective:This study involved synthesis of a new series of different five-membered heterocyclic derivatives, testing their antioxidant activity, and examining their potential in vitro antimicrobial agents. Methods: The synthesis of the derivatives involved a three-step process. Initially, succinyl chloride was reacted with methanol, followed by a reaction with 80% hydrazine hydrate through a nucleophilic addition-elimination mechanism, resulting in the formation of succinohydrazide (I). This compound was then employed as a precursor for the synthesis of Schiff bases (II), and (III) by reacting it with m-nitro benzaldehyde and p-nitro benzaldehyde. Following this, a ring closure reaction was applied using thioglycolic acid, glycolic acid,
... Show MoreIn this work, new Schiff bases of quinazolinone derivatives (Q1-Q5) were synthesized from methyl anthranilate. The synthesis involved three steps. In the first step, methyl anthranilate was reacted with isothiocyanatobenzene, producing the thiourea derivative K1. The second step entailed reacting K1 with hydrazine hydrate, synthesizing 3-amino-2-(phenylamino) quinazolin-4(3H)-one (K2). The third step involved reaction of K2 with various aromatic aldehydes, yielding the Schiff bases derivatives Q1-Q5. The chemical structures of these compounds were identified by FT-IR,1H NMR and 13C NMR spectroscopy. The newly synthesized derivatives (Q1-Q5) were subjected to rigorous evaluation to assess their efficacy as corrosion inhibitors for ca
... Show MoreIn the current study, a direct method was used to create a new series of charge-transfer complexes of chemicals. In a good yield, new charge-transfer complexes were produced when different quinones reacted with acetonitrile as solvent in a 1:1 mole ratio with N-phenyl-3,4-selenadiazo benzophenone imine. By using analysis techniques like UV, IR, and 1H, 13C-NMR, every substance was recognized. The analysis's results matched the chemical structures proposed for the synthesized substances. Functional theory of density (DFT)
has been used to analyze the molecular structure of the produced Charge-Transfer Complexes, and the energy gap, HOMO surfaces, and LUMO surfaces have all been created throughout the geometry optimization process ut