Pathological blood clot in blood vessels, which often leads to cardiovascular diseases, are one of the most common causes of death in humans. Therefore, enzymatic therapy to degrade blood clots is vital. To achieve this goal, bromelain was immobilized and used for the biodegradation of blood clots. Bromelain was extracted from the pineapple fruit pulp (Ananas comosus) and purified by ion exchange chromatography after precipitation with ammonium sulphate (0-80 %), resulting in a yield of 70%, purification fold of 1.42, and a specific activity of 1175 U/mg. Bromelain was covalently immobilized on functionalized multi-walled carbon nanotubes (MWCNT), with an enzyme loading of 71.35%. The results of the characterization of free and immobilized bromelain demonstrated that the optimum pH for free and immobilized bromelain activity was 7.0, while the pH range of stability was from 5.0 to 8.5 and 4.0 to 9.0, respectively. The optimum temperature for free and immobilized bromelain activity was 45ºC, whereas the stability was 15 to 50°C and 15 to 55°C, respectively. The immobilized bromelain activity was decreased after the fifth reuse, and the storage period of the free and immobilized bromelain was decreased after 6 and 123 days, respectively. Casein was the best substrate-free bromelain, and fibrin was the best substrate for immobilized bromelain. The results of the purification of polyphenol oxidases (PPO) from potatoes by ion exchange chromatography gave a yield of about 54 %, a purification fold of 1.27, and a specific activity of 2804 U/mg. The current study showed that the immobilized bromelain can significantly biodegrade human blood clots in vitro, while the PPO enzyme has no significant effect on blood clots.
Pore pressure means the pressure of the fluid filling the pore space of formations. When pore pressure is higher than hydrostatic pressure, it is named abnormal pore pressure or overpressure. When abnormal pressure occurred leads to many severe problems such as well kick, blowout during the drilling, then, prediction of this pressure is crucially essential to reduce cost and to avoid drilling problems that happened during drilling when this pressure occurred. The purpose of this paper is the determination of pore pressure in all layers, including the three formations (Yamama, Suliay, and Gotnia) in a deep exploration oil well in West Qurna field specifically well no. WQ-15 in the south of Iraq. In this study, a new appro
... Show MoreThe H-Point Standard Addition Method (H-PSAM) has been applied for spectrophotometric simultaneous determination of Cimetidine and Erythromycin ethylsuccinate using Bromothymol Blue (BTB) as a chromogenic complexing agent in a buffer solution at pH 5.5.
This paper presents a study of wavelet self-organizing maps (WSOM) for face recognition. The WSOM is a feed forward network that estimates optimized wavelet based for the discrete wavelet transform (DWT) on the basis of the distribution of the input data, where wavelet basis transforms are used as activation function.
Net pay is one of the most important parameters used in determining initial oil in place of a reservoir. It can be delineated through the using of limiting values of the petrophysical properties of the reservoir. Those limiting values are named as the cutoff. This paper provides an insight into the application of regression line method in estimating porosity, clay volume and water saturation cutoff values in Mishrif reservoir/ Missan oil fields. The study included 29 wells distributed in seven oilfields of Halfaya, Buzurgan, Dujaila, Noor, Fauqi, Amara and Kumait.
This study is carried out by applying two types of linear regressions: Least square and Reduce Major Axis Regression.
The Mishrif formation was
... Show MoreThis study is concerned with the derivation of differential equation of motion for the free coupled vertical – torsional and lateral vibration of opened thin-walled curved beams. The curved beam to be considered in this study is of isotropic opened thin – walled (I) section with equal top and bottom flanges. The derivation depends on Hamilton's principle which required finding the potential and kinetic energy of the curved beam section due to internal stresses and all types of movements (Vertical,Torsional and Lateral) .The effect of restrained warping displacement is also considered in this study. Three differential equations are derived for vertical, torsional and lateral movement .and approximate solutions are developed by using the
... Show More