The accurate extracting, studying, and analyzing of drainage basin morphometric aspects is important for the accurate determination of environmental factors that formed them, such as climate, tectonic activity, region lithology, and land covering vegetation.
This work was divided into three stages; the 1st stage was delineation of the Al-Abiadh basin borders using a new approach that depends on three-dimensional modeling of the studied region and a drainage network pattern extraction using (Shuttle Radar Topographic Mission) data, the 2nd was the classification of the Al-Abiadh basin streams according to their shape and widenings, and the 3rd was ex
... Show MoreIntroduction: Nitrofurantoin (NFT) is abroad spectrum bactericidal antibiotic. The bioavailability of NFT is affected by many factors. Samafurantin® tablets containing 50 mg NFT were manufactured by Samarra drug industry. Urinary excretion studies were employed since; the urinary tract is the main site of NFT action and excretion. Objective: The objective of the study was to investigate the effect of Uricol® and food on secondary pharmacokinetic parameters of Samafurantin® tablets with different doses by applying urinary data. Methods: Twelve healthy male volunteers participated in this study. Urine samples were collected from each volunteer after overnight fasting at a specified time intervals which considered as a blank sample for meas
... Show MoreThe study aimed to analyze the effect of meteorological factors (rainfall rate and temperature) on the change in land use in the marshes of the Al‐Majar Al‐Kabir region in southern Iraq. Satellite images from Landsat 7 for 2012 and Landsat 8 for 2022 were used to monitor changes in the land coverings, the images taken from the Enhanced Thematic Mapper Plus (ETM+) and Operational Land Imager (OLI) sensors of the Landsat satellite. Geometric correction was used to convert images into a format with precise geographic coordinates using ArcMap 10.5. The maximum likelihood classification method was used to examine satellite image data using a supervised approach, and the data were analyzed statistically. We obtained clear images of the area,
... Show MoreAutomatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show MoreDiscriminant analysis is a technique used to distinguish and classification an individual to a group among a number of groups based on a linear combination of a set of relevant variables know discriminant function. In this research discriminant analysis used to analysis data from repeated measurements design. We will deal with the problem of discrimination and classification in the case of two groups by assuming the Compound Symmetry covariance structure under the assumption of normality for univariate repeated measures data.
... Show More
The Sonic Scanner is a multifunctional instrument designed to log wells, assess elastic characteristics, and support reservoir characterisation. Furthermore, it facilitates comprehension of rock mechanics, gas detection, and well positioning, while also furnishing data for geomechanical computations and sand management. The present work involved the application of the Sonic Scanner for both basic and advanced processing of oil-well-penetrating carbonate media. The study aimed to characterize the compressional, shear, Stoneley slowness, rock mechanical properties, and Shear anisotropy analysis of the formation. Except for intervals where significant washouts are encountered, the data quality of the Monopole, Dipole, and Stoneley modes is gen
... Show MoreIn this study, SnO2 nanoparticles were prepared from cost-low tin chloride (SnCl2.2H2O) and ethanol by adding ammonia solution by the sol-gel method, which is one of the lowest-cost and simplest techniques. The SnO2 nanoparticles were dried in a drying oven at a temperature of 70°C for 7 hours. After that, it burned in an oven at a temperature of 200°C for 24 hours. The structure, material, morphological, and optical properties of the synthesized SnO2 in nanoparticle sizes are studied utilizing X-ray diffraction. The Scherrer expression was used to compute nanoparticle sizes according to X-ray diffraction, and the results needed to be scrutinized more closely. The micro-strain indicates the broadening of diffraction peaks for nano
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show More