In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical definition for network lifetime in the IoT is to increase the period of cooperation between objects to carry out all the assigned tasks. The main contribution in this paper is to address the problem of task allocation in the IoT as an optimization problem with a lifetime-aware model. A genetic algorithm is proposed as a task allocation protocol. For the proposed algorithm, a problem-tailored individual representation and a modified uniform crossover are designed. Further, the individual initialization and perturbation operators (crossover and mutation) are designed so as to remedy the infeasibility of any solution located or reached by the proposed genetic algorithm. The results showed reasonable performance for the proposed genetic-based task allocation protocol. Further, the results prove the necessity for designing problem-specific operators instead of adopting the canonical counterparts.
In this paper, the construction of Hermite wavelets functions and their operational matrix of integration is presented. The Hermite wavelets method is applied to solve nth order Volterra integro diferential equations (VIDE) by expanding the unknown functions, as series in terms of Hermite wavelets with unknown coefficients. Finally, two examples are given
This paper discusses an optimal path planning algorithm based on an Adaptive Multi-Objective Particle Swarm Optimization Algorithm (AMOPSO) for two case studies. First case, single robot wants to reach a goal in the static environment that contain two obstacles and two danger source. The second one, is improving the ability for five robots to reach the shortest way. The proposed algorithm solves the optimization problems for the first case by finding the minimum distance from initial to goal position and also ensuring that the generated path has a maximum distance from the danger zones. And for the second case, finding the shortest path for every robot and without any collision between them with the shortest time. In ord
... Show MoreEvolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E
... Show MoreThe article is devoted to the Russian-Arabic translation, a particular theory of which has not been developed in domestic translation studies to the extent that the mechanisms of translation from and into European languages are described. In this regard, as well as with the growing volumes of Russian-Arabic translation, the issues of this private theory of translation require significant additions and new approaches. The authors set the task of determining the means of translation (cognitive and mental operations and language transformations) that contribute to the achievement of the most equivalent correspondences of such typologically different languages as Russian and Arabic. The work summarizes and analyzes the accumulated exper
... Show MoreThere are many methods of searching large amount of data to find one particular piece of information. Such as find name of person in record of mobile. Certain methods of organizing data make the search process more efficient the objective of these methods is to find the element with least cost (least time). Binary search algorithm is faster than sequential and other commonly used search algorithms. This research develops binary search algorithm by using new structure called Triple, structure in this structure data are represented as triple. It consists of three locations (1-Top, 2-Left, and 3-Right) Binary search algorithm divide the search interval in half, this process makes the maximum number of comparisons (Average case com
... Show MoreThe role of transmembrane protease serine 2(TMPRSS2) in prostate carcinogenesis relies on overexpression of ETS transcription factors. The aim of this article was to investigate the association of TMPRSS2 polymorphism (rs12329760 (C\T)) with prostate cancer (PCa) in sample of Iraqi patients. One hundred and two individuals were involved in this study for the period from February – 2019 to February – 2020. The sample type was formalin fixed paraffin embedded tissue samples (FFPE), which involved fifty-six samples of pre-diagnosed patients with prostate cancer, aged between 48 and 86 years, and forty-six samples were found to be controls (healthy group) dependent on Prostate Gland integrity, which is the same age as in a group o
... Show MoreBP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.
Gestational diabetes mellitus (GDM) is a growing health concern that usually appears during the second and third trimester stage of pregnancy and is characterized by carbohydrate intolerance of variable severity. The aim of the present study was to scrutinize the relationship between the G972R polymorphism of the insulin receptor substrate-1 (IRS-1) gene with GDM in the Iraqi female population. One hundred and twenty of blood samples taken from healthy women (control) and women with gestational diabetes mellitus in 3rd trimester stage of pregnancy, fasting blood glucose (FBG) and HbA1c% measured to diagnose GDM, lipid profile (cholesterol, triglyceride, HDL, LDL, and VLDL), insulin concentration, insulin resistance and beta cell function to
... Show MoreCryptography algorithms play a critical role in information technology against various attacks witnessed in the digital era. Many studies and algorithms are done to achieve security issues for information systems. The high complexity of computational operations characterizes the traditional cryptography algorithms. On the other hand, lightweight algorithms are the way to solve most of the security issues that encounter applying traditional cryptography in constrained devices. However, a symmetric cipher is widely applied for ensuring the security of data communication in constraint devices. In this study, we proposed a hybrid algorithm based on two cryptography algorithms PRESENT and Salsa20. Also, a 2D logistic map of a chaotic system is a
... Show More