In the last few years, the Internet of Things (IoT) is gaining remarkable attention in both academic and industrial worlds. The main goal of the IoT is laying on describing everyday objects with different capabilities in an interconnected fashion to the Internet to share resources and to carry out the assigned tasks. Most of the IoT objects are heterogeneous in terms of the amount of energy, processing ability, memory storage, etc. However, one of the most important challenges facing the IoT networks is the energy-efficient task allocation. An efficient task allocation protocol in the IoT network should ensure the fair and efficient distribution of resources for all objects to collaborate dynamically with limited energy. The canonical definition for network lifetime in the IoT is to increase the period of cooperation between objects to carry out all the assigned tasks. The main contribution in this paper is to address the problem of task allocation in the IoT as an optimization problem with a lifetime-aware model. A genetic algorithm is proposed as a task allocation protocol. For the proposed algorithm, a problem-tailored individual representation and a modified uniform crossover are designed. Further, the individual initialization and perturbation operators (crossover and mutation) are designed so as to remedy the infeasibility of any solution located or reached by the proposed genetic algorithm. The results showed reasonable performance for the proposed genetic-based task allocation protocol. Further, the results prove the necessity for designing problem-specific operators instead of adopting the canonical counterparts.
A total of 47 samples were collected from different clinical specimens (urine, wounds, burns, sputum, blood, stools) during the period from November 2013 to
January 2014, only 18 isolates (38.29%) were identified as Klebsiella pneumoniae ,11isolates (23.4%) as E. coli , 9 isolates (19.1%) as S. aureus, 3isolates (6.3%) as Psedomonase spp., 2 isolates (4.2 %) as K. terrigena and 4 isolates (8.5%) as K. oxytoca. The results were shown the elevation of K. pneumoniae percentage among the bacterial isolates depending on cultural, microscopically, biochemically characteristics and confirmed by using the API 20E and VITEK 2 system . Also K. pneumoniae isolates were more frequently in sputum samples then burns, stools , urine, wounds ,and blo
The experiment was carried out at the Field Crops Research Station, College of Agricultural Engineering Sciences - University of Baghdad in Jadiriyah, with the aim of evaluating the performance of partial diallel hybrids and inbred lines of maize and estimating general combining ability(GCA), specific combining ability (SCA) and some genetic parameters. The experiment was carried out in two seasons, spring and fall 2020. Eight inbred lines of maize were used in the study (BI9/834, BSW18, LW/5 L8/844, ZA17W194, Z117W, ZI17W9, ZI7W4), numbered (1,2,3,4,5,6,7,8), It was sowed in the spring season and entered into a cross-program according to a partial diallel crossing system to obtain tw
A new blind restoration algorithm is presented and shows high quality restoration. This
is done by enforcing Wiener filtering approach in the Fourier domains of the image and the
psf environments
This paper provides a four-stage Trigonometrically Fitted Improved Runge-Kutta (TFIRK4) method of four orders to solve oscillatory problems, which contains an oscillatory character in the solutions. Compared to the traditional Runge-Kutta method, the Improved Runge-Kutta (IRK) method is a natural two-step method requiring fewer steps. The suggested method extends the fourth-order Improved Runge-Kutta (IRK4) method with trigonometric calculations. This approach is intended to integrate problems with particular initial value problems (IVPs) using the set functions and for trigonometrically fitted. To improve the method's accuracy, the problem primary frequency is used. The novel method is more accurate than the conventional Runge-Ku
... Show MoreAchieving energy-efficient Wireless Sensor Network (WSN) that monitors all targets at
all times is an essential challenge facing many large-scale surveillance applications.Singleobjective
set cover problem (SCP) is a well-known NP-hard optimization problem used to
set a minimum set of active sensors that efficiently cover all the targeted area. Realizing
that designing energy-efficient WSN and providing reliable coverage are in conflict with
each other, a multi-objective optimization tool is a strong choice for providing a set of
approximate Pareto optimal solutions (i.e., Pareto Front) that come up with tradeoff
between these two objectives. Thus, in the context of WSNs design problem, our main
contribution is to
This paper is concerned with the quaternary nonlinear hyperbolic boundary value problem (QNLHBVP) studding constraints quaternary optimal classical continuous control vector (CQOCCCV), the cost function (CF), and the equality and inequality quaternary state and control constraints vector (EIQSCCV). The existence of a CQOCCCV dominating by the QNLHBVP is stated and demonstrated using the Aubin compactness theorem (ACTH) under appropriate hypotheses (HYPs). Furthermore, mathematical formulation of the quaternary adjoint equations (QAEs) related to the quaternary state equations (QSE) are discovere so as its weak form (WF) . The directional derivative (DD) of the Hamiltonian (Ham) is calculated. The necessary and sufficient conditions for
... Show MoreIn the presence of multi-collinearity problem, the parameter estimation method based on the ordinary least squares procedure is unsatisfactory. In 1970, Hoerl and Kennard insert analternative method labeled as estimator of ridge regression.
In such estimator, ridge parameter plays an important role in estimation. Various methods were proposed by many statisticians to select the biasing constant (ridge parameter). Another popular method that is used to deal with the multi-collinearity problem is the principal component method. In this paper,we employ the simulation technique to compare the performance of principal component estimator with some types of ordinary ridge regression estimators based on the value of t
... Show MoreBuried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show More