A sensitive, accurate, and affordable colorimetric method was developed for assaying prednisolone (PRZ) in various medicinal forms. The procedure involves the oxidation of PRZ by ferric ions, followed by complexation of the resulting ferrous ions with ferricyanide to produce a greenish-blue product. Common complexation conditions were thoroughly investigated. The mole ratio of FeCl₃·6H₂O to K₃Fe(CN)₆ was 8:1. The proposed mechanism of complexation was suggested and considered. Various parameters were optimized, including the reduction of the colorimetric reaction temperature to 50°C and the duration of heating and analysis to 20-30 minutes. The calibration curve was linear over the range of 1-60 µg/mL. The limit of detection (LOD) and the limit of quantification (LOQ) were 0.5 μg/mL and 1 μg/mL, respectively. Spiking actual samples with standard PRZ showed recoveries within the 97.3-100.1% range. The method exhibited high precision, with an RSD% of less than 1.5%. Additionally, the study confirmed that common pharmaceutical excipients did not interfere. Real medicinal samples, including tablets, syrup, eye drops, and creams, were successfully examined for direct analysis of PRZ using the developed methodology, demonstrating its suitability for routine analysis of various PRZ-containing drug formulations.
The present study aim at preparing frusemide in liquid form suitable for oral use. This is achieved through preparing different liquid forms of frusemide. The frusemide liquid is prepared in the following forms: oral solution, syrup and elixir with intensity of 1, 0.4 and 0.8% weight /volume respectively and in combination with potassium carbonate, polysorbate 80, alcohol and phosphate buffer solution of pH8 to dissolve the frusemide in the above mentioned forms. The different forms of the prepared medicine have been stored in glass bottles that can provide protection against light and at 40, 50, 600C for four months. Besides the pH has been checked to decide the period of validity. The results show that the expiration date of
... Show MoreSimple, cheap, sensitive, and accurate kinetic- spectrophotometric method has been developed for the determination of naringenin in pure and supplements formulations. The method is based on the formation of Prussian blue. The product dye exhibits a maximum absorbance at 707 nm. The calibration graph of naringenin was linear over the range 0.3 to 10 µg ml-1 for the fixed time method (at 15 min) with a correlation coefficient (r) and percentage linearity (r2%) were of 0.9995 and 99.90 %, respectively, while the limit of detection LOD was 0.041 µg ml-1. The method was successfully applied for the determination of naringenin in supplements with satisfac
... Show MoreA simple and rapid spectrophotometric method for the determination of sulphite SO3-2 is described. The method is based on the rapid reduction of known amount of chromate CrO4-2 in the presence of sulphite in acidic medium of 2N H2SO4. The amount of excess of chromate was measured after it reactions with 1,5-diphenylcarbazide which finally gives a pink-violet, water soluble and stable complex, which exhibit a maximum absorption at 542 nm. Beer's law was obeyed in the concentration range from 0.004-6.0 µg of sulphite in a final volume of 25 ml with a molar absorbtivity of 4.64×104 l.mol-1.cm-1, Sandal's sensitivity index of 0.001724 ?g .cm-2 and relative standard deviation of ±0.55 - ±0.83 depending on the concentration level. The present
... Show MoreThis approach was developed to achieve an accurate, fast, economic and sensitivity to estimation of diphenhydramine Hydrochloride. The dye that produced via reaction between diphenhydramine HCl with thymol blue in acidic medium pH ≈ 4.0. The ion pair method include an optimization study to formed yellowcolored that extraction by liquid – liquid method. The product separated of complexes by using by chloroform solution measured spectrophotometry at 400 nm. The analysis data at optimum conditions showed that linearity concentration in a range of calibration curve 1.0 – 50 μg /mL, limit of detectionand limit of quantification 0.0786 and 0.2358 μg/mL respectively. The molar absorptivity and Sandell’s sensitivity were 1.8 × 10 -4 L/mo
... Show MoreAbstract
A sensitive, precise and reliable indirect spectrophotometric method for the determination of chlordiazepoxide (CDE) in pure and pharmaceutical dosage forms is described. The method is based on oxidative coupling reaction between amino group resulting from acidic decomposition of CDE with phenothiazine in the presence of sodium periodate to produce an intense green soluble dye that is stable and shows a maximum absorption at 602 nm. The calibration plot indicates that Beer’s law is obeyed over the concentration range of 0.1?50 µg/mL, with a molar absorptivity of 1×104 L/mol cm and correlation coefficient of 0.9994.All the conditions that affecting on the stability and sensitivity of the fo
... Show MoreIt is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations. The methods are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respec
... Show MoreA simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected opti
... Show MoreSimple, precise and economic batch and flow injection analysis (FIA)-spectrophotometric methods have been established for simultaneous determination of salbutamol sulfate (SLB) in bulk powder and pharmaceutical forms. Both methods based on diazotization coupling reaction of SLB with another drug compound (sulfadimidine) as a safe and green diazotization agent in alkaline medium. At 444 nm, the maximum absorption of the orange azo-dye product was observed. A thorough investigation of all chemical and physical factors was conducted for batch and FIA procedures to achieve high sensitivity. Under the optimized experimental variables, SLB obeys Beer’s law in the concentration range of 0.25-4 and 10-100 μg/mL with limits of detection o
... Show MoreA simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected optimum conditions,
... Show MoreA new spectrophotometric method has been developed for the assay of olanzapine (OLN.) in pure and dosage forms. The method is based on the diazocoupling of (OLN.) with diazotized p-nitroaniline in alkaline medium to form a stable brown colored water-soluble azo dye with a maximum absorption at 405 nm. The variables that affect the completion of reaction have been carefully optimized. Beer’s law is obeyed over the concentration range of (0.5-45.0 μg.mL-1) with a molar absorptivity of 1.5777×104 L.mol-1.cm-1. The limit of detection was 0.3148 μg.mL-1 and Sandell’s sensitivity value was 0.0198 μg.cm-2. The propose
... Show More