This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.
The road network serves as a hub for opportunities in production and consumption, resource extraction, and social cohabitation. In turn, this promotes a higher standard of living and the expansion of cities. This research explores the road network's spatial connectedness and its effects on travel and urban form in the Al-Kadhimiya and Al-Adhamiya municipalities. Satellite images and paper maps have been employed to extract information on the existing road network, including their kinds, conditions, density, and lengths. The spatial structure of the road network was then generated using the ArcGIS software environment. The road pattern connectivity was evaluated using graph theory indices. The study demands the abstraction and examin
... Show MoreBackground: Glass ionomers have good biocompatibility and the ability to adhere to both enamel and dentin. However, they have certain demerits, mainly low tensile and compressive strengths. Therefore, this study was done to assess consistency and compressive strength of glass ionomer reinforced by different amount of hydroxyapatite. Materials and Methods: In this study hydroxyapatite materials were added to glass ionomer cement at different ratios, 10%, 15%, 20%, 25% and 30% (by weight). The standard consistency test described in America dental association (ADA) specification No. 8 was used, so that all new base materials could be conveniently mixed and the results would be of comparable value and the compressive strength test described by
... Show MoreBackground: This study was done to assist bond strength of glass ionomer cement reinforced by different amount of Hydroxyapatite
Materials and methods: In this study a hydroxyapatite materials were added to glass ionomer cement at different ratios; 10%, 15%, 20%, 25% and 30% (by weight) and the bond strength was detected by construction a cylinders from these mixed materials, constructed on exposed dentine of human extracted premolar teeth and by Zwick’s universal testing machine the bond strength were detected for these mixed materials.
Results: Results showed that the glass ionomer cement reinforced by hydroxyapatite has higher bond strength than conventional glass ionomer cement and the hydroyapat
BACKGROUND: Preterm labour is a major cause of perinatal morbidity and mortality, so it is important to predict preterm delivery using the clinical examination of the cervix and uterine contraction frequency. New markers for the prediction of preterm birth have been developed such as transvaginal ultrasound measurement of cervical length as this method is widely available. OBJECTIVE: To determine, whether transvaginal cervical length measurement predicts imminent preterm delivery better than digital cervical length measurement in women presented with preterm labour and intact membranes. PATIENTS AND METHODS: Two hundred women presented with preterm labour between 24 and 36+6 weeks of gestation were included in this study. All women subjecte
... Show MoreDiabetes mellitus, with adverse neonatal events are challenging issues to all obstetricians and pediatricians, where uric acid could play a vital role. We aimed to assess the relationship and prognostic benefits of serum uric acid measured at about 20 weeks’ gestation in normotensive pregnancy, with subsequent maternal diabetes, and neonatal complications. All singleton normotensive pregnant women with normal blood glucose, serum creatinine, and weight before pregnancy, whom attended Medical City Hospital, Department of Obstetrics and Gynecology in Baghdad, were involved and regarded as the case group, on the condition that their serum uric acid measured at 20 weeks’ gestation > 3 mg/dl, but if ≤ 3 mg/dl, they would be regi
... Show MoreAbstract
A surface fitting model is developed based on calorimeter data for two famous brands of household compressors. Correlation equations of ten coefficient polynomials were found as a function of refrigerant saturating and evaporating temperatures in range of (-35℃ to -10℃) using Matlab software for cooling capacity, power consumption, and refrigerant mass flow rate.
Additional correlations equations for these variables as a quick choice selection for a proper compressor use at ASHRAE standard that cover a range of swept volume range (2.24-11.15) cm3.
The result indicated that these surface fitting models are accurate with in ± 15% for 72 compressors model of cooling cap
... Show MoreDeep learning (DL) plays a significant role in several tasks, especially classification and prediction. Classification tasks can be efficiently achieved via convolutional neural networks (CNN) with a huge dataset, while recurrent neural networks (RNN) can perform prediction tasks due to their ability to remember time series data. In this paper, three models have been proposed to certify the evaluation track for classification and prediction tasks associated with four datasets (two for each task). These models are CNN and RNN, which include two models (Long Short Term Memory (LSTM)) and GRU (Gated Recurrent Unit). Each model is employed to work consequently over the two mentioned tasks to draw a road map of deep learning mod
... Show MoreMultiphase flow is a very common phenomenon in oil wells. Several correlation models, either analytical or experimental, have been investigated by various studies to investigate this phenomenon. However, no single correlation model was found to produce good results in all flow conditions. 14 models available on the Prosper software were selected for the purpose of calculating the pressure gradient inside wells within a range of different flow conditions. The pressure gradient was calculated using Prosper software, then compared with the measured gradient based on the production log test (PLT) data. This study was conducted on 31 wells from five different oil fields (Kirkuk, Jambur, Bai-Hassan, Al-Ahdab, and Rumaila). It is worth noting t
... Show MorePVA and chitosan biodegradable, non-toxic, biocompatible polymers convenient for use in drug release.
In this study polyvinyl alcohol (PVA) and chitosan (CS) hydrogels crosslinked with glutaraldehyde (GA) with different ratio morphology and structure characterization interpenetrating polymer network (IPN).They were investigated by Fourier transmission infrared spectroscopy (FTIR), scanning electron microscope (SEM), UV-Visible spectrophotometer,swelling of hydrogel and drug release were studied by changing crosslinking ratio and PH.