Preferred Language
Articles
/
Uhe7l5MBVTCNdQwCTdbp
An Artificial Neural Network Prediction Model of GFRP Residual Tensile Strength
...Show More Authors

This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.

Crossref
View Publication
Publication Date
Sun Oct 23 2022
Journal Name
Baghdad Science Journal
Comparison Between Deterministic and Stochastic Model for Interaction (COVID-19) With Host Cells in Humans
...Show More Authors

In this paper, the deterministic and the stochastic models are proposed to study the interaction of the Coronavirus (COVID-19) with host cells inside the human body. In the deterministic model, the value of the basic reproduction number   determines the persistence or extinction of the COVID-19. If   , one infected cell will transmit the virus to less than one cell, as a result,  the person carrying the Coronavirus will get rid of the disease .If   the infected cell  will be able to infect  all  cells that contain ACE receptors. The stochastic model proves that if  are sufficiently large then maybe  give  us ultimate disease extinction although ,  and this  facts also proved by computer simulation.

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Dissertation/thesis
A Model To Evaluate the Online Training for Global Virtual Teams in Global Software Projects
...Show More Authors

Publication Date
Wed Sep 15 2021
Journal Name
Al-academy
Processes directing the scenography space in the Iraqi theatrical show Shakespeare texts as a model
...Show More Authors

Publication Date
Sun Mar 06 2022
Journal Name
Al–bahith Al–a'alami
Semiotic criteria for analyzing religious symbols in press reports Qantara news site as a model
...Show More Authors

The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the problem of the semiotic employment of religious symbols in press reports published in the electronic press across two levels: Reading to perceive the visual message in its abstract form, and the second for re-understanding and interpretation, as this level gives semantics to reveal the implicit level of media messages through a set of semiotic criteria on which it was based to cut texts to reach the process of understanding and interpretation.

The report includes a group of symbols that are employed within a framework that gives a language of greater impact. This research discusses the p

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Mar 28 2020
Journal Name
Iraqi Journal Of Science
Least Squares Estimations for the General Linear Model Parameters with Epsilon Skew Normal Error Term
...Show More Authors

Examination of skewness makes academics more aware of the importance of accurate statistical analysis. Undoubtedly, most phenomena contain a certain percentage of skewness which resulted to the appearance of what is -called "asymmetry" and, consequently, the importance of the skew normal family . The epsilon skew normal distribution ESN (μ, σ, ε) is one of the probability distributions which provide a more flexible model because the skewness parameter provides the possibility to fluctuate from normal to skewed distribution. Theoretically, the estimation of linear regression model parameters, with an average error value that is not zero, is considered a major challenge due to having difficulties, as no explicit formula to calcula

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Some Robust Estimators for Estimate parameters logistic regression model to Binary Response – using simulation)).
...Show More Authors

 

 The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.                                                          

Among the problems that appear as a result of the use of some statistical methods I

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2020
Journal Name
2nd International Conference On Materials Engineering & Science (iconmeas 2019)
A kinetic model for prodigiosin production by Serratia marcescens as a bio-colorant in bioreactor
...Show More Authors

View Publication
Scopus (15)
Crossref (14)
Scopus Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (1)
Scopus Crossref
Publication Date
Wed May 08 2024
Journal Name
Journal Of Mathematics And Computer Science
How does media coverage affect a COVID-19 pandemic model with direct and indirect transmission?
...Show More Authors

In this paper, a compartmental differential epidemic model of COVID-19 pandemic transmission is constructed and analyzed that accounts for the effects of media coverage. The model can be categorized into eight distinct divisions: susceptible individuals, exposed individuals, quarantine class, infected individuals, isolated class, infectious material in the environment, media coverage, and recovered individuals. The qualitative analysis of the model indicates that the disease-free equilibrium point is asymptotically stable when the basic reproduction number R0 is less than one. Conversely, the endemic equilibrium is globally asymptotically stable when R0 is bigger than one. In addition, a sensitivity analysis is conducted to determine which

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Mar 01 2021
Journal Name
Desalination And Water Treatment
Extraction model to remove antibiotics from aqueous solution by emulsion and Pickering emulsion liquid membrane
...Show More Authors

View Publication
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref