This study uses an Artificial Neural Network (ANN) to examine the constitutive relationships of the Glass Fiber Reinforced Polymer (GFRP) residual tensile strength at elevated temperatures. The objective is to develop an effective model and establish fire performance criteria for concrete structures in fire scenarios. Multilayer networks that employ reactive error distribution approaches can determine the residual tensile strength of GFRP using six input parameters, in contrast to previous mathematical models that utilized one or two inputs while disregarding the others. Multilayered networks employing reactive error distribution technology assign weights to each variable influencing the residual tensile strength of GFRP. Temperature exerted the most significant influence at 100%, while sample dimensions had a minimal impact at 17.9%. In addition, the mathematical model closest to the proposed was the Bazli model, because the latter depends on two variables (thickness and temperature). The ANN accurately predicted the residual tensile strength of GFRP at elevated temperatures, achieving a correlation coefficient of 97.3% and a determination coefficient of 94.3%.
Predicting peterophysical parameters and doing accurate geological modeling which are an active research area in petroleum industry cannot be done accurately unless the reservoir formations are classified into sub-groups. Also, getting core samples from all wells and characterize them by geologists are very expensive way; therefore, we used the Electro-Facies characterization which is a simple and cost-effective approach to classify one of Iraqi heterogeneous carbonate reservoirs using commonly available well logs.
The main goal of this work is to identify the optimum E-Facies units based on principal components analysis (PCA) and model based cluster analysis(MC
... Show MoreMachine learning (ML) is a key component within the broader field of artificial intelligence (AI) that employs statistical methods to empower computers with the ability to learn and make decisions autonomously, without the need for explicit programming. It is founded on the concept that computers can acquire knowledge from data, identify patterns, and draw conclusions with minimal human intervention. The main categories of ML include supervised learning, unsupervised learning, semisupervised learning, and reinforcement learning. Supervised learning involves training models using labelled datasets and comprises two primary forms: classification and regression. Regression is used for continuous output, while classification is employed
... Show MoreEvaluation of the Antibacterial Efficacy of Electrolyzed Oxidizing Water as an Irrigant against Enterococcus faecalis (An In vitro Study), Noor A Khait*, Muna Saleem Kalaf
The research topic was chosen as a result of the importance of human resource in business organizations in general and the industrial process in particular. Without the human resource, business organizations cannot continue and achieve success and excellence, and the research problem has been diagnosed in the lack of sales of General Cement Company’s northern products, despite their distinctiveness, standing, and reputation in The market and its products with standard specifications, and through this problem, the following questions were raised: &nbs
... Show MoreThe research aims to demonstrate the dual use of analysis to predict financial failure according to the Altman model and stress tests to achieve integration in banking risk management. On the bank’s ability to withstand crises, especially in light of its low rating according to the Altman model, and the possibility of its failure in the future, thus proving or denying the research hypothesis, the research reached a set of conclusions, the most important of which (the bank, according to the Altman model, is threatened with failure in the near future, as it is located within the red zone according to the model’s description, and will incur losses if it is exposed to crises in the future according to the analysis of stress tests
... Show MoreIn this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.