Researchers are increasingly using multimodal biometrics to strengthen the security of biometric applications. In this study, a strong multimodal human identification model was developed to address the growing problem of spoofing attacks in biometric security systems. Through the use of metaheuristic optimization methods, such as the Genetic Algorithm(GA), Ant Colony Optimization(ACO), and Particle Swarm Optimization (PSO) for feature selection, this unique model incorporates three biometric modalities: face, iris, and fingerprint. Image pre-processing, feature extraction, critical image feature selection, and multibiometric recognition are the four main steps in the workflow of the system. To determine its performance, the model was evaluated on the SDUMLA-HMT dataset, which contains a variety of biometric features from various individuals. The system outperformed existing techniques in the literature with an excellent recognition accuracy of 99.4%. Although this result is encouraging, further research on larger and more varied datasets is necessary to confirm its applicability across many circumstances. This study highlights how multimodal biometrics strengthened by metaheuristic algorithms can considerably increase biometric security against spoofing assaults, thereby opening a promising new direction for future development in the field.
Gas-lift technique plays an important role in sustaining oil production, especially from a mature field when the reservoirs’ natural energy becomes insufficient. However, optimally allocation of the gas injection rate in a large field through its gas-lift network system towards maximization of oil production rate is a challenging task. The conventional gas-lift optimization problems may become inefficient and incapable of modelling the gas-lift optimization in a large network system with problems associated with multi-objective, multi-constrained, and limited gas injection rate. The key objective of this study is to assess the feasibility of utilizing the Genetic Algorithm (GA) technique to optimize t
Prodigiosin is a ‘natural red pigment produced by Serratia marcescens which exhibits immunosuppressive and anticancer properties in addition to antimicrobial activities. This work presents an attempt to maximize the production of prodigiosin by two different strategies: one factor at time (OFAT) and statistical optimization. The result of OFAT revealed that sucrose and peptone were the best carbon and nitrogen sources for pigment production with concentration of prodigiosin of about 135 mg/ L. This value was increased to 331.6mg/ L with an optimized ratio of C/N (60:40) and reached 356.8 with pH 6 and 2% inoculum size at end of classical optimization. Statistical experimental design based on Response surface methodology was co
... Show MoreThe objective of this work is to study the influence of end milling cutting process parameters, tool material and geometry on multi-response outputs for 4032 Al-alloy. This can be done by proposing an approach that combines Taguchi method with grey relational analysis. Three cutting parameters have been selected (spindle speed, feed rate and cut depth) with three levels for each parameter. Three tools with different materials and geometry have been also used to design the experimental tests and runs based on matrix L9. The end milling process with several output characteristics is solved using a grey relational analysis. The results of analysis of variance (ANOVA) showed that the major influencing parameters on multi-objective response w
... Show MoreCharge transfer complex formation method has been applied for the spectrophotometric determination of erythromycin ethylsuccinate, in bulk sample and dosage form. The method was accurate, simple, rapid, inexpensive and sensitive depending on the formed charge- transfer complex between cited drug and, 2,3- Dichloro-5,6-dicyano-p- benzoquinone (DDQ) as a chromogenic reagent. The formed complex shows absorbance maxima at 587 nm against reagent blank. The calibration graph is linear in the ranges of (10 - 110) μg.mL-1 with detection limit of 0.351μg.mL-1. The results show the absence of interferences from the excipients on the determination of the drug. Therefore the proposed method has been successfully applied for the determination of eryth
... Show MoreAs a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen
... Show MoreBacteria strain H8, which produces high amount of exopolysaccharide (EPS), was isolated from soil, and identified as strain of Azotobacter chrococcum by its biochemical /physiological characteristics, EPS was extracted, partially purified and used as bioflocculant. The biochemical analysis of the partially purified EPS revealed that it was an alginate. analysis of EPS by Fourier transform infrared spectrometry (FTIR) show that the -OH groups present in bioflocculant are clearly seen at 3433.06 cm-1, the peaks attributed to the -CH3 groups present at 2916.17 cm-1 , and some distinct peaks such as carboxyl group showed strong absorption bands at 1604.66 cm-1, 1411.80 cm-1 and 1303.79 cm-1 indicate the chemical structure of alginate. The effe
... Show MoreDrilling well design optimization reduces total Authorization for Expenditures (AFE) by decreasing well constructing time and expense. Well design is not a constant pattern during the life cycle of the field. It should be optimized by continuous improvements for all aspects of redesigning the well depending on the actual field conditions and problems. The core objective of this study is to deliver a general review of the well design optimization processes and the available studies and applications to employ the well design optimization to solve problems encountered with well design so that cost effectiveness and perfect drilling well performance are achievable. Well design optimization processes include unconventional design(slimhole) co
... Show MoreThe present work is concerned with the finding of the optimum conditions for biochemical wastewater treatment for a local tannery. The water samples were taken from outline areas (the wastewater of the chrome and vegetable tannery) in equal volumes and subjected to sedimentation, biological treatment, and chemical and natural sedimentation treatment.
The Box-Wilson method of experimental design was adopted to find useful relationships between three operating variables that affect the treatment processes (temperature, aeration period and phosphate concentration) on the Biochemical Oxygen Demand (BOD5).
The experimental data collected by this method were successfully fitted to a second order polynomial mathematical model. The most fa
To finalize any construction investment project, it would be necessary to identify the most significant problems and obstacles that lead to project reluctance and stalling. Unexpected events and conflicts may have disrupted these strategies and impacted project development. Due to the high initial investment costs of construction projects, crises can have an immediate impact, resulting in significant financial losses. The 2014 financial crisis was one of the most prominent crises that Iraq faced, which prompted the researcher to identify and evaluate those obstacles through this research and questionnaires using Pareto scientific theory to exclude factors that do not contribute to project lag. It was discovered that 28 o
... Show Morewater quality assessment is still being done at specific locations of major concern. The use of Geographical Information System (GIS) based water quality information system and spatial analysis with Inverse Distance Weighted interpolation enabled the mapping of water quality indicators along Tigris river in Salah Al-Din government, Iraq. Water quality indicators were monitored by taking 13 river samples from different locations along the river during Winter season year 2020. Maps of 10 water quality indicators. This meant that the specific water quality indicator and diffuse pollution characteristics in the basin were better illustrated with the variations displayed along the course of the river than conventional line graphs. Creation of
... Show More