Preferred Language
Articles
/
UhbAUIcBVTCNdQwCjEQh
Effect of nano-titanium oxide addition on some mechanical properties of silicone elastomers for maxillofacial prostheses

Objective This study evaluated the effects of adding titanium oxide (TiO2) nanofillers on the tear strength, tensile strength, elongation percentage, and hardness of room-temperature-vulcanized (RTV) VST50F and high-temperature-vulcanized (HTV) Cosmesil M511 maxillofacial silicone elastomers. Methods Two types of maxillofacial elastomers, VST50F RTV and Cosmesil M511 HTV, were used. Nano-TiO2 powder was applied as a nanofiller. A total of 120 specimens were fabricated, 60 each of VST50F and Cosmesil M511. The specimens of each type of elastomer were divided into three equal groups on which tests were conducted for tear strength, tensile strength, and hardness i.e., 20 specimens were used for each test. Each group of 20 specimens was further divided into two equal subgroups: (A) control i.e., silicone without nano-TiO2, and (B) experimental i.e., VST50F and Cosmesil M511 silicone incorporated with 0.25 wt% and 0.2 wt% nano-TiO2, respectively. Each subgroup thus had 10 specimens. The specimens were evaluated, and data were studied using descriptive statistical analysis and two-way analysis of variance (ANOVA). Results The addition of 0.25 wt% and 0.2 wt% TiO2 nanofiller into VST50F and Cosmesil M511 elastomers, respectively, resulted in a statistically significant increase in the mean values (p < 0.01) of tear strength, tensile strength, elongation percentage, and hardness of the materials. Conclusion The mechanical properties of the VST50F and Cosmesil M511 maxillofacial silicone materials improved with the addition of select concentrations of nano-TiO2.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
The Saudi Dental Journal
Evaluation of some mechanical properties of a new silicone elastomer for maxillofacial prostheses after addition of intrinsic pigments

Objective: The approximate life span of a silicone maxillofacial prosthesis is as short as1.5–2 years of clinical service, then a new prosthesis should be fabricated. The most common reasonfor re-making the prosthesis is silicone mechanical properties degradation. The aim of this studywas to assess some mechanical properties of VST-30 silicone for maxillofacial prostheses after addi-tion of intrinsic pigments.Methods: Two types of intrinsic pigments (rayon flocking and burnt sienna); each of them wasincorporated into silicone. One hundred and twenty samples were prepared and split into 4 groupsaccording to the conducted tests (tear strength, hardness, surface roughness, and tensile strengthand elongation percentage) with 30 samples for ea

... Show More
Scopus (18)
Crossref (17)
Scopus Clarivate Crossref
View Publication
Publication Date
Thu Jun 01 2017
Journal Name
Iosr Journal Of Pharmacy And Biological Sciences
Effect of Nano Silicon Dioxide Addition on Some Properties of Heat Vulcanized Maxillofacial Silicone Elastomer

Abstract : Silicone elastomer is widely used as the material of choice for fabricating maxillofacial prosthesis. However, silicone properties are far from ideal; low tear strength, low tensile strength and insufficient elasticity are the most undesirable properties. The purpose of this study was to evaluate the effect of addition of nano SiO2filler on tear strength, tensile strength, elongation at break, hardness and color of Cosmesil M-511 HTV maxillofacial silicone elastomer. Nano SiO2was added to the silicone base in concentrations of 4%, 5% and 6% by weight. Silicone with 0% nano filler served as a control. Tear test was done according to ISO 34-1. Tensile and elongation test was done according to ISO 37. Shore A hardness test was done

... Show More
Crossref (9)
Crossref
View Publication Preview PDF
Publication Date
Sat Sep 01 2018
Journal Name
International Journal Of Medical Research & Health Sciences
Effect of Silver-Zinc Zeolite Addition on Mechanical Properties of Maxillofacial Silicone

Background: Deterioration of maxillofacial silicone properties due to microbial colonization is a common problem and leads to the replacement of the prosthesis. Incorporation of the antimicrobial agent into the silicone could be a solution. The purpose of this study was to evaluate the effect of silver-zinc zeolite addition on some mechanical properties of a maxillofacial silicone (VST-50). Materials and methods: Total 120 specimens were fabricated and divided into 3 groups: 40 specimens for tear strength test, 40 specimens for tensile and percentage of elongation tests and 40 specimens for Shore A hardness and surface roughness. Each group was divided into 4 subgroups according to the amount of zeolite added (0% “control”, 0.5%, 1% and

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 30 2018
Journal Name
Journal Of Pure And Applied Microbiology
Scopus (1)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Taibah University Medical Sciences
Impact of nano-cellulose fiber addition on physico-mechanical properties of room temperature vulcanized maxillofacial silicone material

Objectives: Maxillofacial silicone is used to restore abnormalities due to congenital or acquired causes. However, the quality of silicone is far from ideal. This study was aimed at assessing the influence of the addition of cellulose nanofibers (CNFs; several nanometers wide and 2-5 micro m long) on the physical and mechanical characteristics of maxillofacial silicone elastomers. Methods: Two CNF weight percentages (0.5% and 1%) were tested, and 180 specimens were divided into one control and two experimental groups. Each group was subdivided into six subgroups. In each subgroup, ten specimens subjected to each of the following tests: tearing strength, Shore-A hardness, tensile strength, elongation percentage, surface roughness, and color

... Show More
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Dec 14 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Effect of Disinfection on Some Properties of Heat-Vulcanized Maxillofacial Silicone Elastomer Reinforced by Nano Silicone Dioxide

Background: The daily cleaning routine of the silicone maxillofacial prostheses by the patient may cause some alteration in the materials properties. The purpose of the present study was to investigate the effect of different disinfection procedures on some properties of silicon dioxide reinforced Cosmesil M511 HTV maxillofacial silicone. Materials and Methods: One hundred and sixty (160) specimens were prepared by mixing 5% SiO2 nano particles and 0.5% intrinsic cream color into the silicone polymer according to manufacturer's instructions. Specimens were divided into 4 groups according to the performed test (tear strength, surface hardness, surface roughness and color) with 40 specimens each. Each group was further subdivided according to

... Show More
Crossref (7)
Crossref
View Publication Preview PDF
Publication Date
Fri May 01 2020
Journal Name
European Journal Of General Dentistry
Effect of plant-extract disinfectant solutions on the specific properties of reinforced maxillofacial silicone elastomers with nanofiller and intrinsic pigment
Abstract<p> Objective This study aimed to evaluate the effects of disinfectant solutions, namely, the alcoholic extract of Salvadora persica L. (A1 = 10% and A2 = 15%) and chlorhexidine digluconate (A3 = 2%), on the tear strength and hardness of room temperature vulcanizing (RTV) VST50F and heat temperature vulcanizing (HTV) Cosmesil M511 silicone elastomers before and after reinforcement with nanofillers (TiO2) and intrinsic pigment. Materials and Methods: A total of 320 specimens were prepared, with 160 specimens each for RTV and HTV silicone. Forty specimens were evaluated before disinfection and divided into two equal groups, namely, control (without additive) and experimental (with ad</p> ... Show More
Scopus (4)
Crossref (5)
Scopus Crossref
View Publication
Publication Date
Sun Dec 15 2019
Journal Name
Journal Of Baghdad College Of Dentistry
The Effects of Nano Alumina On Mechanical Properties of Room Temperature Vulcanized Maxillofacial Silicone (Pilot Study)

Background: Facial disfigurement can be the result of a congenital anomaly, trauma or tumor surgery, in many cases the prosthetic rehabilitation is indicated. Maxillofacial prosthetic materials should have desirable and ideal physical, aesthetic, and biological properties and those properties should be kept for long period of time in order to reach patient acceptance. Silicone elastomer are the most commonly used material for facial restoration because of its favorable properties mechanically and physically as the biocompatibility and good elasticity. Aim of this study: This study aimed to evaluate the effect of addition of Aluminum oxide (Al2O3) Nano fillers in different concentrations on tear strength and hardness of VST 50F room tempe

... Show More
Scopus (4)
Crossref (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Dec 25 2017
Journal Name
Biomedical And Pharmacology Journal
Crossref (4)
Crossref
View Publication
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
Effect of Water on Some Mechanical Properties of Epoxy Blends Reinforced With Different Weight Fractions of Nano Titanium Oxide and Nano Silica

Polymer composites were prepared using epoxy resin (EP) and unsaturated polyester (UPE) as a blend matrices, which were mixed together in different percentages (starting from 90:10) of (epoxy/polyester) respectively, and ending with (50:50) of (epoxy/polyester). The optimum mixing ratio (OMR) of the components was decided upon the results of the impact strength value of these blending ratio, which showed the highest value of (16.3) KJ/m2 for the blending ratio (80:20) of (EP/UPE) respectively.
The blend with (OMR) was chosen to be reinforced with three different weight fractions of reinforcement; the 1st one was reinforced with nano titanium oxide (TiO2) with a weight fraction (2% wt.), the 2nd one was reinforced with both nano (TiO2)

... Show More
View Publication Preview PDF