The influence and hazard of fire flame are one of the most important parameters that affecting the durability and strength of structural members. This research studied the influence of fire flame on the behavior of reinforced concrete beams affected by repeated load. Nine self- compacted reinforced concrete beams were castellated, all have the same geometric layout (0.15x0.15x1.00) m, reinforcement details and compressive strength (50 Mpa). To estimate the effect of fire flame disaster, four temperatures were adopted (200, 300, 400 and 500) oC and two method of cooling were used (graduated and sudden). In the first cooling method, graduated, the tested beams were leaved to cool in air while in the second method, sudden, water splash was used to reduce the temperature. Eight of the tested beams were divided in to four groups, each were burned to one of the adopted temperature for about half an hour and cooled by the adopted cooling methods (one by sudden cooling and the other by graduated cooling). After burning and cooling the beams were tested under the effect of repeated load (loading – unloading) for five cycle and then up to failure. As a compared with the non- burned beam, the results indicated that the ultimate load capacity of the tested beams were reduced by (16, 23, 54 and 71)% after being burned to (200, 300, 400 and 500) oC , respectively, for a case of sudden cooling and by (8, 14, 36 and 64)% , respectively, for a case of graduated cooling. It was also found that the effect of sudden cooling was greater than that in a case of graduated cooling. Regarding the failure mode, there was a different between the non-burred beam and the other ones even that all of them had the same geometric layout, compressive strength and reinforcement details. The failure mode for all burned beams was combined shear- flexure failure which was belong to the reduction in the compressive strength of the concrete due to the effect of the temperature rising , while the failure mode of the non-burned beam was flexure failure which was compatible with the preliminary design. It was also detected that the residual deflection proportion directly with the temperature, as the temperature increase to (200, 300, 400 and 500) oC the residual deflection compared with the non-burned beam increased by (32, 48, 326 and 358)% for a case of sudden cooling and by (13, 29, 303 and 332)% for a case of graduated cooling. Another effect was appear represented by the method of cooling, the results showed that the sudden cooling had more effect on the residual deflection than the graduated cooling by (15-6)% approximately. To vanish the residual deflection, numbers of cycle (loading-unloading) were required. It was found that this number increase as the temperature of burning increased and it’s also larger in a case of sudden cooling.
In this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current density (C
... Show MoreIn This paper, CuO thin films having different thickness (250, 300 , 350 and 400) nm were deposited on glass substrates by thermal vacuum evaporator. The thermal oxidation of this evaporated film was done in heated glass at temperature (300 in air at one hour. The study of X-ray diffraction investigated all the exhibit polycrystalline nature with monoclinic crystal structure include uniformly grains. Thin film’s internal structure topographical and optical properties. Furthermore, the crystallization directions of CuO (35.54 , 38.70 ) can be clearly observed through an X-ray diffraction analysis XRD, Atomic Force Microscope AFM (topographic image) showed that the surface Characteristics , thin films crystals grew with increases in either
... Show MoreIn this study, successive electrocoagulation (EC) and electro-oxidation (EO) processes were used to minimize some of the major pollutants in real wastewater, such as organics (detected by chemical oxygen demand (COD)), and turbidity. The wastewater utilized in the present study was collected from the Midland Refinery Company in Baghdad-Iraq. The performance of the successive batch EC-EO processes was studied by utilizing Graphite and Aluminum (Al) as monopolar anode electrodes and stainless steel (st.st.) as the cathode. The Taguchi experimental design approach was used to attain the best experimental conditions for COD reduction as a major response. Starting from chemical oxygen demand COD of (600 ppm), the effects of current densi
... Show MoreDoxorubicin (DOX) is an efficient antineoplastic agent with a broad antitumor spectrum; however, doxorubicin-associated cardiotoxic adverse effect through oxidative damage and apoptosis limits its clinical application. Cafestol (Caf) is a naturally occurring diterpene in unfiltered coffee with unique antioxidant, antimutagenic, and anti-inflammatory activities by activating the Nrf2 pathway. The present study aimed to investigate the potential chemoprotective effect of cafestol on DOX-induced cardiotoxicity in rats. Wistar albino rats of both sexes were administered cafestol (5 mg/kg/day) for 14 consecutive days by oral gavage alone or with doxorubicin which was injected as a single dose (15 mg/kg intraperitoneally at day 14) to i
... Show MorePolarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomeno
Polarization manipulation elements operating at visible wavelengths represent a critical component of quantum communication sub-systems, equivalent to their telecom wavelength counterparts. The method proposed involves rotating the optic axis of the polarized input light by an angle of 45 degree, thereby converting the fundamental transverse electric (TE0) mode to the fundamental transverse magnetic (TM0) mode. This paper outlines an integrated gallium phosphide-waveguide polarization rotator, which relies on the rotation of a horizontal slot by 45 degree at a wavelength of 700 nm. This will ultimately lead to the conception of a mode hybridization phenomenon in the waveguide. The simulation results demonstrate a polarization co
... Show MoreNano TiO2 thin films on glass substrates were prepared at a constant temperature of (373 K) and base vacuum (10-3 mbar), by pulsed laser deposition (PLD) using Nd:YAG laser at 1064 nm wavelength. The effects of different laser energies between (700-1000)mJ on the properties of TiO2 films was investigated. TiO2 thin films were characterized by X-ray diffraction (XRD) measurements have shown that the polycrystalline TiO2 prepared at laser energy 1000 mJ. Preparation also includes optical transmittance and absorption measurements as well as measuring the uniformity of the surface of these films. Optimum parameters have been identified for the growth of high-quality TiO2 films
... Show MoreThe human gastrointestinal system is a complex ecosystem crucial for well-being. During sepsis-induced gut injury, the integrity of the intestinal barrier can be compromised. Lipopolysaccharide (LPS), an endotoxin from Gram-negative bacteria, disrupts the intestinal barrier, contributing to inflammation and various dysfunctions. The current study explores the protective effects of limonene, a natural compound with diverse biological properties, against LPS-induced jejunal injury in mice. Oral administration of limonene at dosages of 100 and 200 mg/kg was used in the LPS mouse model. The Murine Sepsis Score (MSS) was utilized to evaluate the severity of sepsis, while serum levels of urea and creatinine served as indicators of renal f
... Show MoreZinc sulfide(ZnS) thin films of different thickness were deposited on corning glass with the substrate kept at room temperature and high vacuum using thermal evaporation technique.the film properties investigated include their absorbance/transmittance/reflectance spectra,band gap,refractive index,extinction coefficient,complex dielectric constant and thickness.The films were found to exhibt high transmittance(59-98%) ,low absorbance and low reflectance in the visible/near infrared region up to 900 nm..However, the absorbance of the films were found to be high in the ultra violet region with peak around 360 nm.The thickness(using optical interference fringes method) of various films thichness(100,200,300,and 400) nm.The band gap meas
... Show MoreDBN Rashid, International Journal of Development in Social Sciences and Humanities, 2020