Background: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa that produce melanin and extraction of melanin. Synthesis and characterization silver nanoparticle and study of the antimicrobial activity of silver nanoparticles in the presence of melanin against UTI pathogens. Materials and methods: The samples swab inoculated on cetrimide agar as selective media and incubated aerobically for 24 hours at 37 °C. Used nutrient agar with nutrient broth supplement with 1% tyrosine for screening for melanin production by P. aeruginosa isolates,silver nanoparticles synthesis from P. aeruginosa was done according to biological method and was characterized with AFM, UV-Visible, XRD, FTIR and FE-SEM. Agar well diffusion method was used to examine the effect of combination against UTI pathogens. Results: The synergistic effects of AgNPs and melanin were evaluated to compare between the two treatments (silver nanoparticles alone and combination of silver nanoparticles and melanin). The results revealed that the combination showed the highest antimicrobial activity in compare with silver nanoparticles alone.
Nanoparticles are a special group of materials with unique features and extensive applications in diverse fields. The use of nanoparticles of some metals is a viable solution to stop infectious diseases due to the antimicrobial properties of these nanoparticles. The present work demonstrates the effect of silver nanoparticles (AgNPs) on the antibacterial activity of four different antibiotics (amoxicillin, ceftriaxone, chloramphenicol, and penicillin) against eleven Gram-positive and Gram-negative isolates. Disk diffusion method was used to determine the antibacterial activity of various classes of antibiotics in the absence and presence of sub-inhibitory silver nanoparticles of concentration (80 microgram/ml). A synergistic effect was o
... Show MoreIn the present study, silver nanoparticles (AgNPs) were prepared using an eco-friendly method synthesized in a single step biosynthetic using leaves aqueous extract of Piper nigrum, Ziziphus spina-christi, and Eucalyptus globulus act as a reducing and capping agents, as a function of volume ratio of aqueous extract(100ppm) to AgNO3 (0.001M), (1: 10, 2: 10, 3: 10). The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AgNPs showed surface Plasmon resonance centered at 443, 440, and 441 nm for sample prepared using extract Piper nigrum, Ziziphus spina-christi, and Eucalyptus respectively. The XRD pattern showed that the strong intense peaks
This search reports the synthesis of some new series of Schiff base compounds for trimetheprim derivatives which known high been known as a medicinal effectiveness. Trimetheprim was condensed with several substituted aldehydes compounds.(4-dimethyl amine benzaldehyde , propanal , salicaldehyde, 2.4 dimethoxy benzaldehyde and 4- methyl benzaldehyde) to obtain Schiff base products(1a-5a) and several substituted ketones compound (4-aminoacetophenone,4-chloroacetophenone, isobutyleketone, acetylacetone and acetophenone) to obtain Schiff base products(6b-10b) in ethanol in the presence of concentrated sulphuric acid as a catalyst to yield the Schiff base. The structure of synthesized compounds has been established on the basis of their Chemical
... Show MoreFive derivatives of thiadiazole were prepared with aldehydes and alkyl halides, compoundA: 2-amino-5-thiol-1,3,4- thiadiazole, compound B :2-(o-hydroxybenzylidine)amino-5-thiol-1,3,4-thiadiazole, compoundC: 2(2-butan-lidine)amino-5-thiol-1,3,4-thiadiazole, compound E: 2- amino-5-(2-Propanylthio)-1,3,4-thiadiazol) and compound F:2(o-chlorobenzylamino)-5-(2-propanyl thio)-1,3,4 thiadiazol. All prepared compounds were diagnosed by (IR) and (UV) Spectroscopy. All of those compounds were screened for their anti-microbial activity in vitro. The results show that most of the compounds A, B, C exhibited moderate to good activity against Gram-positive bacteria and the same compound exhibit low to moderate activity on most gram-negative bacte
... Show MoreNew schiff bases series (VIII) a-e and 1,3-thiazolidin-4-one derivatives (IX) a-e containing the 1,2,4-triazole and 1,3,4-thiazazole rings were synthesized and screening their biological activities. These compounds were identified via Fourier transform infrared (FT-IR) spectra, some via Proton nuclear magnetic resonance (1H-NMR) and mass spectra. The biological results indicated that all of these compounds did not reveal antibacterial effectiveness against (Escherichia coli and Klebsiella species) (G-). Some of these compounds showed moderate antibacterial activity against (Staphylococcus aureus, and Staphylococcus epidermidis) (G+), and all compounds exhibited moderate activity against Candida albicans.
Objective: Schiff’s and Mannich bases of isatins are an important group of heterocyclic compounds which are of great importance in medicinal chemistry as antimicrobial agents. In the vision of these facts, new bis-Schiff bases and Mannich bases of isatins were synthesized. Methods: Three different bis-Schiff bases (3a-c) have been synthesized by reacting isatin, 5-fluoroisatin and 5-methoxy isatin with thiophene-2- carboxaldehyde using hydrazine hydrate to link between the carbonyl compounds, and then these bis- Schiff bases were condensed with two different secondary amines (piperidine and morpholine) separately, and formaldehyde to form the Mannich bases (4a-c and 5a-f), respectively. Results: The structures of the newly synthesized com
... Show MoreLignans are natural products widely distributed in the plant kingdom. They are composed of two β-β-linked phenylpropane (shikimate-derived biogenetic subunits). Although the backbone of lignans is composed of phenylpropane units, there is enormous diversity in the structure of lignans leading to different classes of lignans, such as γ-butyrolactone derivatives, eg. Hymatairesinol, bicyclooctadiene derivatives, e.g. pinoresinol, tetrahydrofuran derivatives e.g.lariciresinol, di-arylbutandiol derivatives, e.g. secoisolariciresinol. Introduction of a further carbon –carbon linkage leads to a class of lignans collectively known as cyclolignans such as tetrahydro-naphthalene derivatives, for example podophyllotoxin. Lignans ha
... Show MoreObjective: Zerumbone (ZER) is a well-known natural compound that has been reported to have anti-cancer effect. Thus, this study investigated the ZER potential to inhibit Thymidine Phosphorylase (TP) and the ability to trigger Reactive oxygen species (ROS)-mediated cytotoxicity in non-small cell lung cancer, NCI-H460, cell line. Material and Method: The antiangiogenic activity for ZER was evaluated by using the thymidine phosphorylase inhibitory test. Reactive oxygen species (ROS) production was determined via DCFDA dye by using flow cytometry. Result and Discussion: ZER was found to be potent TP inhibitory with the IC50 value of 50.3± 0.31 μg/ml or 230±1.42 µM. NCI-H460 cells upon treatment with ZER produced sign
... Show MoreThis study included synthesizing silver nanoparticles (AgNPs) in a green method using AgNO3 solution with glucose exposed to microwave radiation. The prepared NPs were also characterized using ultraviolet and visible (UV-vis) spectroscopy and scanning electron microscopy (SEM). The UV/vis spectroscopy confirmed the production of AgNPs, while SEM analysis showed that the typical spherical AgNPs were 30 nm and 50 nm in size for the NPs prepared using black tea (B) and green tea (G) as reducing agent, respectively. The changes in some of the biochemical parameters related to the liver and kidneys have been analyzed to evaluate the probable toxic effects of AgNPs. 40 adult male mice were included in this study. To assess the probable he
... Show More