Background: Nowadays, the environmentally friendly procedures must be developed to avoid using harmful compounds in synthesis methods. Their increase interest in creating and researching silver nanoparticles (AgNPs) because of their numerous applications in many fields especially medical fields such as burn, wound healing, dental and bone implants, antibacterial, viral, fungal, and arthropodal activities. Biosynthesis of nanoparticles mediated pigments have been widely used as antimicrobial agent against microorganisms. Silver nanoparticles had synthesized by using melanin from locally isolate Pseudomonas aeruginosa, and used as antimicrobial activity against pathogenic microorganisms. Aim of the study: Isolation of Pseudomonas aeruginosa that produce melanin and extraction of melanin. Synthesis and characterization silver nanoparticle and study of the antimicrobial activity of silver nanoparticles in the presence of melanin against UTI pathogens. Materials and methods: The samples swab inoculated on cetrimide agar as selective media and incubated aerobically for 24 hours at 37 °C. Used nutrient agar with nutrient broth supplement with 1% tyrosine for screening for melanin production by P. aeruginosa isolates,silver nanoparticles synthesis from P. aeruginosa was done according to biological method and was characterized with AFM, UV-Visible, XRD, FTIR and FE-SEM. Agar well diffusion method was used to examine the effect of combination against UTI pathogens. Results: The synergistic effects of AgNPs and melanin were evaluated to compare between the two treatments (silver nanoparticles alone and combination of silver nanoparticles and melanin). The results revealed that the combination showed the highest antimicrobial activity in compare with silver nanoparticles alone.
The nuclear charge density distributions, form factors and
corresponding proton, charge, neutron, and matter root mean square
radii for stable 4He, 12C, and 16O nuclei have been calculated using
single-particle radial wave functions of Woods-Saxon potential and
harmonic-oscillator potential for comparison. The calculations for the
ground charge density distributions using the Woods-Saxon potential
show good agreement with experimental data for 4He nucleus while
the results for 12C and 16O nuclei are better in harmonic-oscillator
potential. The calculated elastic charge form factors in Woods-Saxon
potential are better than the results of harmonic-oscillator potential.
Finally, the calculated root mean square
The nuclear charge density distributions, form factors andcorresponding proton, charge, neutron, and matter root mean squareradii for stable 4He, 12C, and 16O nuclei have been calculated usingsingle-particle radial wave functions of Woods-Saxon potential andharmonic-oscillator potential for comparison. The calculations for theground charge density distributions using the Woods-Saxon potentialshow good agreement with experimental data for 4He nucleus whilethe results for 12C and 16O nuclei are better in harmonic-oscillatorpotential. The calculated elastic charge form factors in Woods-Saxonpotential are better than the results of harmonic-oscillator potential.Finally, the calculated root mean square radii usingWoods-Saxonpotentials ho
... Show MoreBackground: In young adults, multiple sclerosis is a prevalent chronic inflammatory demyelinating condition. It is characterized by white matter affection, but many individuals also have significant gray matter involvement. A double-inversion recovery pulse (DIR) pattern was recently proposed to improve the visibility of multiple sclerosis lesions. Objective: To find out how well a DIR sequence, FLAIR, and T2-weighted pulse sequences can find MS lesions in the supratentorial and infratentorial regions. Methods: A total of 37 patients with established diagnoses of multiple sclerosis were included in this cross-sectional study. Brain MRI was done using double inversion recovery, T2, and FLAIR sequences. The number of lesions was count
... Show MoreThis article describes how to predict different types of multiple reflections in pre-track seismic data. The characteristics of multiple reflections can be expressed as a combination of the characteristics of primary reflections. Multiple velocities always come in lower magnitude than the primaries, this is the base for separating them during Normal Move Out correction. The muting procedure is applied in Time-Velocity analysis domain. Semblance plot is used to diagnose multiples availability and judgment for muting dimensions. This processing procedure is used to eliminate internal multiples from real 2D seismic data from southern Iraq in two stages. The first is conventional Normal Move Out correction and velocity auto picking and
... Show MoreUntil recently, researchers have utilized and applied various techniques for intrusion detection system (IDS), including DNA encoding and clustering that are widely used for this purpose. In addition to the other two major techniques for detection are anomaly and misuse detection, where anomaly detection is done based on user behavior, while misuse detection is done based on known attacks signatures. However, both techniques have some drawbacks, such as a high false alarm rate. Therefore, hybrid IDS takes advantage of combining the strength of both techniques to overcome their limitations. In this paper, a hybrid IDS is proposed based on the DNA encoding and clustering method. The proposed DNA encoding is done based on the UNSW-NB15
... Show MoreWith the high usage of computers and networks in the current time, the amount of security threats is increased. The study of intrusion detection systems (IDS) has received much attention throughout the computer science field. The main objective of this study is to examine the existing literature on various approaches for Intrusion Detection. This paper presents an overview of different intrusion detection systems and a detailed analysis of multiple techniques for these systems, including their advantages and disadvantages. These techniques include artificial neural networks, bio-inspired computing, evolutionary techniques, machine learning, and pattern recognition.
Surveillance cameras are video cameras used for the purpose of observing an area. They are often connected to a recording device or IP network, and may be watched by a security guard or law enforcement officer. In case of location have less percentage of movement (like home courtyard during night); then we need to check whole recorded video to show where and when that motion occur which are wasting in time. So this paper aims at processing the real time video captured by a Webcam to detect motion in the Scene using MATLAB 2012a, with keeping in mind that camera still recorded which means real time detection. The results show accuracy and efficiency in detecting motion
Breast cancer constitutes about one fourth of the registered cancer cases among the Iraqi population (1)
and it is the leading cause of death among Iraqi women (2)
. Each year more women are exposed to the vicious
ramifications of this disease which include death if left unmanaged or the negative sequels that they would
experience, cosmetically and psychologically, after exposure to radical mastectomy.
The World Health Organization (WHO) documented that early detection and screening, when coped
with adequate therapy, could offer a reduction in breast cancer mortality; displaying that the low survival rates
in less developed countries, including Iraq, is mainly attributed to the lack of early detection programs couple