The effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and heat flux intensity increased, and decreased as inlet fluid temperature increased. When using nanofluids in the FPSC, the measured temperatures of absorber plate and tube wall decreased down to 3.35% and 3.51%, respectively, with the increase in weight concentration and specific surface area, while the efficiency increased up to 10.53% for 0.1- wt% TEA-GNPs nanofluid with specific surface area of 750 m2/g, in comparison with water. When using water as heat transfer fluid, very good agreement was obtained between the experimental and predicted values of absorber plate temperature, tube wall temperature, and collector’s efficiency with maximum differences of 3.02%, 3.19%, and 3.26%, respectively. While, when using nanofluids, higher differences were found, up to 4.74%, 4.7%, and 13.47% for TEA-GNPs nanofluid with specific surface area of 750 m2/g, respectively. Accordingly, the MATLAB code was capable of simulating the thermal performance of FPSCs utilizing nanofluids as their heat transfer fluids with acceptable accuracy. Values of performance index were all greater than 1, and increased as weight concentration increased up to 1.104 for 0.1- wt% TEA-GNPs nanofluid with specific surface area of 750 m2/g, implying higher positive effects on efficiency than negative effects on pressure drop. Accordingly, the investigated nanofluids can efficiently be used in FPSCs for enhanced energy efficiency, and the 0.1- wt% water-based TEA-GNPs nanofluid with specific surface area of 750 m2/g was comparatively the superior one.
Background: The demand for better esthetic during orthodontic treatment has increased nowadays, so orthodontists starting using esthetic arch wires, brackets and ligatures.Tooth colored brackets were introduced in different types of materials. Sapphire ceramic brackets are one type of esthetic brackets and their color stability remains the main concern for the clinicians and patients at the same time. The present study design to evaluate the effect of three different staining materials (pepsi, black tea and cigarette smoke) on the stainability of sapphire ceramic brackets bonded with three types of light cure orthodontic adhesives which include: Resilience, Enlight and Transbond. Materials and Methods: The sample consisted of three hundre
... Show MoreBackground: This study was designed to measure the displacement pattern of posterior palatal seal (pps) area in different forms of the palate and with different impression techniques. Materials and method: This study was used to measure the displacement pattern of (pps)in different palatal shapes by using different impression materials Korrecta wax No.4,Green compound and design of House for pps for each palatal forms by using a 3D Scanner of CAD/CAM and measuring the distance between 2 points in pps area by using Caural Threw. Result: The results show highly significant differences between these techniques and the control group (impression with light body) Conclusion: The physiological impression technique of pps with Korecta wax no.4
... Show MoreThe effect of three ionic liquids viz., 1-hexyl-3-methylimidazolium tetrafluoroborate (ILE), 1-hexyl-3-metylimidazolium hexafluorophosphate (ILF) and 1-octyl-3-methylimidazolium tetrafluoroborate (ILG) when used as surfactants on the performance of dissolved air floatation (DAF) was investigated.
Experiments were conducted at a temperature of 30-35 ºC, 10ppm ferric chloride as coagulant, 50% recycle ratio, pH 8, and 10 minutes treatment time to find oil and grease (OG) and turbidity removal efficiencies at saturation pressure (2-6) bar.
ILs were used at concentration of 50 µl/liter of treated water in two positions in DAF system; the saturation vessel and the treatment tank. The performance using ILs
... Show MoreAqueous Two Phase System (ATPS) or liquid-liquid extraction is used in biotechnology to recover valuable compounds from raw sources. In Aqueous Two-Phase Systems, many factors influence the Partition coefficient, K, (which is the ratio of protein concentration in the top phase to that in the bottom phase) and the Recovery percentage (Rec%). In this research, two systems of ATPS were used: first, polyethylene glycol (PEG) 4000/Sodium citrate (SC), and the second, PEG8000/ Sodium phosphate (SPH), for the extraction of Bovine Serum Albumin (BSA). The behavior of Rec% and K of pure (BSA) in ATPS has been investigated throughout the study by the effects of five parameters: temperature, concentration of polyethylene glycol (P
... Show MoreIn this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show MoreThermomechanical analysis (TMA) and differential scanning calorimetry (DSC) are used to investigate the effect of molding and annealing of polyester on the behavior of thermal expansion and crystallization since these factors play role in the reprocessing or recycling of the polymer. The dynamic mode of the TMA provides enhanced characterization information about the polyester since it separates the transitions into reversible and irreversible signals, and also reveals the progress of the amorphous regions as the polyester loses strength with the increasing temperature approaching melting. Slow cooling after annealing brings crystallization that may be attributed to molecular chain straightening due to orientation.