Preferred Language
Articles
/
UYaoU4YBIXToZYAL8IIJ
Thermal performance of a flat-plate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas
...Show More Authors

The effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and heat flux intensity increased, and decreased as inlet fluid temperature increased. When using nanofluids in the FPSC, the measured temperatures of absorber plate and tube wall decreased down to 3.35% and 3.51%, respectively, with the increase in weight concentration and specific surface area, while the efficiency increased up to 10.53% for 0.1- wt% TEA-GNPs nanofluid with specific surface area of 750 m2/g, in comparison with water. When using water as heat transfer fluid, very good agreement was obtained between the experimental and predicted values of absorber plate temperature, tube wall temperature, and collector’s efficiency with maximum differences of 3.02%, 3.19%, and 3.26%, respectively. While, when using nanofluids, higher differences were found, up to 4.74%, 4.7%, and 13.47% for TEA-GNPs nanofluid with specific surface area of 750 m2/g, respectively. Accordingly, the MATLAB code was capable of simulating the thermal performance of FPSCs utilizing nanofluids as their heat transfer fluids with acceptable accuracy. Values of performance index were all greater than 1, and increased as weight concentration increased up to 1.104 for 0.1- wt% TEA-GNPs nanofluid with specific surface area of 750 m2/g, implying higher positive effects on efficiency than negative effects on pressure drop. Accordingly, the investigated nanofluids can efficiently be used in FPSCs for enhanced energy efficiency, and the 0.1- wt% water-based TEA-GNPs nanofluid with specific surface area of 750 m2/g was comparatively the superior one.

Crossref
Publication Date
Sun Oct 01 2023
Journal Name
Applied Sciences
Multiobjective Optimization of Stereolithography for Dental Bridge Based on a Simple Shape Model Using Taguchi and Response Surface Methods
...Show More Authors

Stereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me

... Show More
View Publication
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
The solar eclipse and its relation with higree months
...Show More Authors

The solar eclipse occurs at short time before the crescent birth moment when the moon near any one of moon orbit nodes It is important to determine the synchronic month which is used to find Higree date. The 'rules' of eclipses are: 

Y= ± 0.997  of Earth radius , the solar eclipse is central and 0.997 < |Y| < 1.026 the umbra cone touch the surface of the Earth, where Y is the least distance from the axis of the moon's shadow to the center of the Earth in units of the equatorial radius of the Earth.

A new model have been designed, depend on the horizontal coordinates of the sun, moon, the distances Earth-Moon (rm), Earth-sun (rs) and |Y| to determine the date and times of total solar eclipse and the geogra

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 30 2025
Journal Name
Iraqi Journal Of Science
Numerical Simulation of Solar Granulation Dynamics Using Optical Correction Techniques
...Show More Authors

High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Baghdad Science Journal
A Prevalence study of Entamoeba spp. in Basrah Province using Different Detection Methods
...Show More Authors

This study aims to determine the prevalence of Entamoeba histolytica, Entamoeba dispar and
Entamoeba moshkovskii by three methods of diagnosis (microscopic examination, cultivation and PCR) that
were compared to obtain an accurate diagnosis of Entamoeba spp. during amoebiasis. Total (n=150) stool
samples related to patients were (n = 100) and healthy controls (n= 50). Clinically diagnosed stool samples
(n=100) were collected from patients attending the consultant clinics of different hospitals in Basrah during
the period from January 2018 to January 2019. The results showed that 60% of collected samples were
positive in a direct microscopic examination. All samples were cultivated on different media; the Bra

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Thu May 04 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Influence Annealing on the Physical Properties of Silver Selenide Thin Film at Different Temperatures by Thermal Evaporation
...Show More Authors

This survey investigates the thermal evaporation of Ag2Se on glass substrates at various thermal annealing temperatures (300, 348, 398, and 448) °K. To ascertain the effect of annealing temperature on the structural, surface morphology, and optical properties of Ag2Se films, investigations and research were carried out. The crystal structure of the film was described by Xray diffraction and other methods.The physical structure and characteristics of the Ag2Se thin films were examined using X-ray and atomic force microscopy (AFM) based techniques. The Ag2Se films surface morphology was examined by AFM techniques; the investigation gave average diameter, surface roughness, and grain size mutation values with increasing annealing temperature

... Show More
Preview PDF
Publication Date
Fri Dec 15 2023
Journal Name
Iraqi Journal Of Laser
D-shape Optical Fiber Development and Enhancement as a Refractive Indices Sensor Using Surface Plasmon Resonance
...Show More Authors

This article showcases the development and utilization of a side-polished fiber optic sensor that can identify altered refractive index levels within a glucose solution through the investigation of the surface Plasmon resonance (SPR) effect. The aim was to enhance efficiency by means of the placement of a 50 nm-thick layer of gold at the D-shape fiber sensing area. The detector was fabricated by utilizing a silica optical fiber (SOF), which underwent a cladding stripping process that resulted in three distinct lengths, followed by a polishing method to remove a portion of the fiber diameter and produce a cross-sectional D-shape. During experimentation with glucose solution, the side-polished fiber optic sensor revealed an adept detection

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Applied Energy
Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins
...Show More Authors

View Publication
Scopus (294)
Crossref (277)
Scopus Clarivate Crossref
Publication Date
Wed Mar 01 2017
Journal Name
2017 Annual Conference On New Trends In Information &amp; Communications Technology Applications (ntict)
Automatic Iraqi license plate recognition system using back propagation neural network (BPNN)
...Show More Authors

View Publication
Scopus (10)
Crossref (8)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Engineering
A Review on Expansive Soils Stabilized with Different Pozzolanic Materials
...Show More Authors

Soils that cause effective damages to engineer structures (such as pavement and foundation) are called problematic or difficult soils (include collapsible soil, expansive soil, etc.). These damages occur due to poor or unfavorited engineering properties, such as low shear strength, high compressibility, high volume changes, etc. In the case of expansive soil, the problem of the shrink-swell phenomenon, when the soil reacts with water, is more pronounced. To overcome such problems, soils can be treated or stabilized with many stabilization ways (mechanical, chemical, etc.). Such ways can amend the unfavorited soil properties. In this review, the pozzolanic materials have been selected to be presented and discussed as chem

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Numerical Simulation of The Influence of Geometric Parameter on The Flow Behavior in a Solar Chimney Power Plant System
...Show More Authors

Numerical simulations have been carried out on the solar chimney power plant systems. This paper gives the flow field analysis for a solar chimney power generation project located in Baghdad. The continuity, Naver-stockes, energy and radiation transfer equations have been solved and carried out by Fluent software. The governing equations are solved for incompressible, 3-D, steady state, turbulent is approximated by a standard k -  model with Boussiuesq approximation to study and evaluate the performance of solar chimney power plant in Baghdad city of Iraq. The different geometric parameters of project are assumed such as collector diameter and chimney height at different working conditions of solar radiation intensity (300,450,600,750

... Show More
View Publication Preview PDF
Crossref (5)
Crossref