The effects of using aqueous nanofluids containing covalently functionalized graphene nanoplatelets with triethanolamine (TEA-GNPs) as novel working fluids on the thermal performance of a flat-plate solar collector (FPSC) have been investigated. Water-based nanofluids with weight concentrations of 0.025%, 0.05%, 0.075%, and 0.1% of TEA-GNPs with specific surface areas of 300, 500, and 750 m2/g were prepared. An experimental setup was designed and built and a simulation program using MATLAB was developed. Experimental tests were performed using inlet fluid temperatures of 30, 40, and 50 °C; flow rates of 0.6, 1.0, and 1.4 kg/min; and heat flux intensities of 600, 800, and 1000 W/m2. The FPSC’s efficiency increased as the flow rate and heat flux intensity increased, and decreased as inlet fluid temperature increased. When using nanofluids in the FPSC, the measured temperatures of absorber plate and tube wall decreased down to 3.35% and 3.51%, respectively, with the increase in weight concentration and specific surface area, while the efficiency increased up to 10.53% for 0.1- wt% TEA-GNPs nanofluid with specific surface area of 750 m2/g, in comparison with water. When using water as heat transfer fluid, very good agreement was obtained between the experimental and predicted values of absorber plate temperature, tube wall temperature, and collector’s efficiency with maximum differences of 3.02%, 3.19%, and 3.26%, respectively. While, when using nanofluids, higher differences were found, up to 4.74%, 4.7%, and 13.47% for TEA-GNPs nanofluid with specific surface area of 750 m2/g, respectively. Accordingly, the MATLAB code was capable of simulating the thermal performance of FPSCs utilizing nanofluids as their heat transfer fluids with acceptable accuracy. Values of performance index were all greater than 1, and increased as weight concentration increased up to 1.104 for 0.1- wt% TEA-GNPs nanofluid with specific surface area of 750 m2/g, implying higher positive effects on efficiency than negative effects on pressure drop. Accordingly, the investigated nanofluids can efficiently be used in FPSCs for enhanced energy efficiency, and the 0.1- wt% water-based TEA-GNPs nanofluid with specific surface area of 750 m2/g was comparatively the superior one.
Development of improved methods for the synthesis of metal oxide nanoparticles are of high priority for the advancement of material science and technology. Herein, the biosynthesis of ZnO using hydrahelix of beta vulgaris and the seed of abrus precatorius as an aqueaus extracts adduced respectivily as stablizer and reductant reagent. The support are characterized by spectroscopic methods ( Ft-IR, Uv-vis ).The FTIR confirmed the presence of ZnO band. The Uv-visible showed absorption peak at corresponds to the ZnO nanostructures. X-ray diffraction, scaning electron microscopy (SEM), dispersive X-ray spectroscopy (EDX) techniques are taken to investigation the size, structure and composition of synthesised ZnO nanocrystals. The XRD pattern mat
... Show MoreSurface Plasmon Resonance (SPR)-based plastic optical fiber sensor for estimating the concentration and refractive index of sugar in human blood serum. The sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal. The blood serum is placed on gold coated core of an Optical grade plastic optical fiber of 980 µm core diameter.
Objective: This study aimed to evaluate the effect of coating titanium (Ti) dental implant with polyether ketone ketone (PEKK) polymer using magnetron sputtering on osseointegration, trying to overcome some of the problems associated with Ti alloys. Material and Methods: Implants were prepared from grade (II) commercially pure titanium (CP Ti), then laser was used to induce roughness on the surface of Ti. PEKK was deposited on the surface of Ti implants by radiofrequency (RF) magnetron sputtering technique. The implants were divided in to three groups: without coating (Ls), with PEKK coating using argon (Ar) as sputtering gas (Ls-PEKK-Ar), and with PEKK coating using nitrogen (N) as sputtering gas (Ls-PEKK-N). All the implants were implante
... Show MoreA review of the literature on intellectual capital development was conducted using systemic criteria for the inclusion of relevant studies. The concepts behind the ideas explored in the present study were discussed in respect to the subject matter. Examining the past state of the art in the intellectual capital sector for achieving high levels of innovation performance provided a multidimensional picture of intellectual capital, innovation performance, and dynamic capabilities. The present review was designed to illustrate the correlation between intellectual capital and innovation performance, as well as the role of dynamic capabilities in moderating the relationship between these constructs. Accordingly, we presented an extensive
... Show MoreThe rate of gas induction was measured in gas-inducing type mechanically agitated contactors provided with two impellers. A reactor of 0.5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of two equal diameter stirrers; the top impeller is shrouded-disk/curved-blade turbine with six evacuated bending blades, while the bottom impeller was disk turbine. The impeller speed was varied in the range of 50 to 800 rpm. The ratio of impeller diameter to tank diameter (D/T) and the submergence (S) of upper impeller from the top were varied. The effects of clearance of lower impeller from the tank bottom (C2) an
... Show MorePhase change materials are known to be good in use in latent heat thermal energy storage (LHTES) systems, but one of their drawbacks is the slow melting and solidification processes. So that, in this work, enhancing heat transfer of phase change material is studied experimentally for in charging and discharging processes by the addition of high thermal conductive material such as copper in the form of brushes, which were added in both PCM and air sides. The additions of brushes have been carried out with different void fractions (97%, 94% and 90%) and the effect of four different air velocities was tested. The results indicate that the minimum brush void fraction gave the maximum heat transfer in PCM and reduced the time
... Show MoreThis work intends to develop an effective heavy metal-free modifier having properties comparable to traditional stabilizers and flame retardants, simultaneously being environmentally friendly and may be superior in many aspects. The important requirement focused on is: how to increase thermal stability and flame retardancy of flexible poly(vinyl chloride). Due to the typical materials now used with poly(vinyl chloride), which increases health and environmental concerns, utilizing a novel heavy metal-free additive will make poly(vinyl chloride) substantially safer. We have used an artificial silicate for this aim, which proved to be an efficient flame retardant and surprisingly showed excellent heat stabilizing effect. Thermal stabi
... Show MoreWheat straw was modified with malonic acid in order to get low cost adsorbent have a good ability to remove copper and ferric ions from aqueous solutions, chemical modification temperature was 120°C and the time was 12 h. Parameters that affect the adsorption experiments were studied and found the optimum pH were 6 and 5 for copper and iron respectively and the time interval was 120 min and the adsorbent mass was 0.1 g. The values for adsorption isotherms parameters were determined according to Langmuir [qmax were 54.64 and 61.7 mg/g while b values were 0.234 and 0.22 mg/l] , Freundlich [Kf were 16.07 and 18.89 mg/g and n were 2.77 and 3.16], Temkin [B were 0.063 and 0.074 j/mol and At were 0.143 and 1.658 l/g] and for Dubinin-Radushkev
... Show More