Background: Gallstone disease (GSD) is a significant global health burden with variable prevalence influenced by metabolic, genetic, and infectious factors. Increasing evidence suggests that Gram-positive bacteria, particularly Staphylococcus aureus and Enterococcus species, contribute to gallstone pathogenesis through enzymatic activity and biofilm formation. Objectives: To characterize Gram-positive bacteria within gallstones from Iraqi patients, evaluate their biofilm-forming capacity, and analyze the relationship between bacterial colonization, gallstone type, and cholesterol levels. Methods: A total of 100 gallstones were obtained from patients undergoing elective cholecystectomy between October 2024 and March 2025. Stones were aseptically processed for bacterial isolation and identification using selective culture media and the VITEK® 2 Compact System. Serum cholesterol levels were determined by enzymatic colorimetric assay. Biofilm formation was quantified via the 96-well microtiter plate method, and statistical correlations between gallstone type, cholesterol level, and bacterial presence were analyzed. Results: Cholesterol stones (57%) were more prevalent than pigment (40%) and mixed stones (3%). Bacterial growth was observed in 43% of gallstones, with Enterococcus species (31 isolates) predominating over S. aureus (12 isolates). Species-level identification revealed E. faecalis (n= 16), E. faecium (n= 9), and E. gallinarum (n= 6), marking the first reported isolation of E. gallinarum from gallstones. Cholesterol concentrations were significantly higher in sterile stones (median 235 mg/dL) compared to bacteria-positive stones (173-186 mg/dL) (P < 0.0001). Biofilm analysis showed all S. aureus isolates as strong producers, whereas E. faecalis exhibited predominantly moderate-to-strong formation, while E. faecium and E. gallinarum displayed weaker capacities. Conclusion: A significant interplay between microbial colonization and gallstone composition. Strong biofilm-producing Gram-positive bacteria, particularly S. aureus and E. faecalis, may facilitate stone maturation and persistence. The novel isolation of E. gallinarum expands the spectrum of biliary microbiota.
Burn is one of the most devastating traumas that someone can encounter in their life. Burn wound sepsis is still the leading cause of death in burned patients. Appropriate knowledge of the causative pathogen in burn sepsis is important for successful patient management and for the reduction of the incidence of antibiotic resistance. A retrospective study was conducted between 2010 and 2018 at the Burn Specialty Hospital in Baghdad.Atotal of 320 blood culture samples were obtained from patients with sepsis orsuspected of having sepsis. Patient age ranged between 9 months to 70 years old, with a mean total burn surface area of 45.26%. The most common microorganisms isolated from those patients who had sepsis or suspicion of sepsis were Klebsi
... Show MoreHalobacterium saccharovorum was isolated from local highsalinity souls named Al-Massab Al-Aam. A growth curve was determined. The average generation time during logarith- mic phase was 17.80±0.62 hr. Bacteriorhodopsin was 1808 lated from the purple membrane, its concentration was 4.8 mg/ml and H.W was 26000. The pattern of other membrane Bpoteins was studied and compared with those of other Boletes. Several unique proteins were isolated and their molecular weights were determined.
This paper presents the synthesis and study of some new mixed-ligand complexes containing nicotinamide(C6H7N2O) symbolized (NA) and phenylalanine (C9H11NO2)symbolized (pheH)] with some metal ions. The resulting products were found to be solid crystalline complexes which have been characterized by :Melting points, Solubility, Molar conductivity. determination the percentage of the metal in the complexes by flame(AAS), magnetic susceptipibility, Spectroscopic Method [FT-IR and UV-Vis]. The proposed structure of the complexes using program , chem office 3D(2006) . The general formula have been given for the prepared complexes : [M(NA)2(phe)]cl M(II): Mn(II) ,Co(II) , Ni(II) , Cu(II) , Zn(II) , Cd(II) & Hg(II)). NA = Nicotinamide= C6
... Show MoreIron oxide(Fe3O4) nanoparticles of different sizes and shapes were synthesized by solve-hydrothermal reaction assisted by microwave irradiation using ferrous ammonium sulfate as a metal precursor, oleic acid as dispersing agent, ethanol as reducing agent and NaOH as precipitating agent at pH=12. The synthesized Fe3O4 nano particles were characterized by X-ray diffraction (XRD), FTIR and thermal analysis TG-DTG. Sizes and shapes of Fe3O4 nanoparticles were characterized by Scanning Electron Microscopy (SEM), and atomic force microscopy (AFM).
A new ligand [N-(3-acetylphenylcarbamothioyl)-4-chlorobenzamide] (CAD) was synthesized by reaction of 4-Chlorobenzoyl isothiocyanate with 3-amino acetophenone, The ligand was characterized by elemental micro analysis C.H.N. S., FT-IR, UV-Vis and 1H,13C- NMR spectra, some transition metals complexes of this ligand were prepared and characterized by FT-IR, UV-Vis spectra, conductivity measurements, magnetic susceptibility and atomic absorption, From obtained results the molecular formula of all prepared complexes were [M(CAD)2(H2O)2]Cl2 (M+2 =Mn, Co, Ni, Cu, Zn, Cd and Hg),the proposed geometrical structure for all complexes were octahedral
The microstructures of rapidly solidified laser clad layers of laser cladding of Inconel 617 with different nickel-aluminum premixed clad powders are discussed. The effect of different cladding speeds on the microstructures of rapidly solidified laser clad layers is discussed too. The detailed microstructural results showed that different growth mechanisms are produced during rapid solidification. These are planar, cellular, cellular/dendritic and dendritic.
A new ligand [N-(4-nitrobenzoylamino)-thioxomethyl] phenylalanine is synthesized by reaction of 4-nitrobenzoyl isothiocyanate with phenylalanine (1:1). It is characterized by micro elemental analysis (C.H.N.S.), FT-IR, (UV-Vis) and 1H and 13CNMR spectra. Some metals ions complexes of this ligand were prepared and characterized by FT-IR, UV-Visible spectra, conductivity measurements, magnetic susceptibility and atomic absorption. From results obtained, the following formula [M(NBA)2] where M2+ = Mn, Co, Ni, Cu, Zn, Pd, Cd and Hg, the proposed molecular structure for these complexes as tetrahedral geometry, except copper and palladium complexes are have square planer geometry.
In this work, the preparation of some new oxazolidine and thiazolidine derivatives has been conducted. This was done over two steps; the first step included the synthesis of Schiff bases A1-A5 in 72-88% yields by the condensation of isonicotinic acid hydrazide and aldehydes. The second step includes the cyclization of derivatives A1-A5 with glycolic acid and thioglycolic acid to obtain the desired products, oxazolidine derivatives B1-B5 (44-60% yields) and thiazolidine derivatives C1-C5 (41-61% yields), respectively. The structure of the prepared compounds was characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. Some of the produced compounds were tested for antioxidant properties.
Amoxicillin 1 was treated with thiosemicarbazide and Phosphoryl chloride to obtain a new derivatives that contains 1,3,4-thiadiazole moiety 2. Schiff bases compounds were synthesized by the reaction of compound 2 with different aldehydes such as benzaldehyde and some substituted Benzaldehyde; p-hydroy, p-Chloro, p-Nitro, p-Dimethylamino, p-Methyl, p-Methoxy, p-Ethoxy to give compounds 3a-h. The obtained compounds have tested towards gram -ve and gram +ve bacteria. The compound shows good to moderate result towards the bacteria.