Preferred Language
Articles
/
URfONI8BVTCNdQwCO2E2
Design and Implementation of a Practical FTTH Network
...Show More Authors

Fiber-to-the-Home (FTTH) has long been recognized as a technology that provides future proof bandwidth [1], but has generally been too expensive to implement on a wide scale. However, reductions in the cost of electro-optic components and improvements in the handling of fiber optics now make FTTH a cost effective solution in many situations. The transition to FTTH in the access network is also a benefit for both consumers and service providers because it opens up the near limitless capacity of the core long-haul network to the local user. In this paper individual passive optical components, transceivers, and fibers has been put together to form a complete FTTH network. Then the implementation of the under construction Baghdad/Al-Gehad FTTH network is presented according to the available information from Iraq Telecommunication Post and Company (ITPC). In this work designing, planning and deploying of FTTH network based on Gigabit Passive Optical Network (GPON) will be evaluated in order to obtain an optimal practical sample when designing and implementing any FTTH network.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
Statistical testing mediation in structural equations models variables with practical application
...Show More Authors

Abstract:
       This study is studied one method of estimation and testing parameters mediating variables in a structural equations model SEM is causal steps method, in order to identify and know the variables that have indirect effects by estimating and testing mediation variables parameters by the above way and then applied to Iraq Women Integrated Social and Health Survey (I-WISH) for year 2011 from the Ministry of planning - Central statistical organization to identify if the  variables having the effect of mediation in the model by the step causal methods by using AMOS program V.23, it
was the independent variable X represents a phenomenon studied (cultural case of the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Dec 08 2022
Journal Name
International Journal Of Interactive Mobile Technologies (ijim)
Implementation of RWP and Gauss Markov Mobility Model for Multi-UAV Networks in Search and Rescue Environment
...Show More Authors

Future generations of wireless networks are expected to heavily rely on unmanned aerial vehicles (UAVs). UAV networks have extraordinary features like high mobility, frequent topology change, tolerance to link failure, and extending the coverage area by adding external UAVs. UAV network provides several advantages for civilian, commercial, search and rescue applications. A realistic mobility model must be used to assess the dependability and effectiveness of UAV protocols and algorithms.  In this research paper, the performance of the Gauss Markov (GM) and Random Waypoint (RWP) mobility models in multi-UAV networks for a search and rescue scenario is analyzed and evaluated. Additionally, the two mobility models GM and RWP are descr

... Show More
View Publication
Crossref (15)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Journal Of Planner And Development
The Quantitative Analysis To Assess The Efficiency Of The Transport Network In Sader City
...Show More Authors

     This research examines the quantitative analysis to assess the efficiency of the transport network in Sadr City, where the study area suffers from a large traffic movement  for the variability of traffic flow and intensity at peak hours as a result of inside traffic and outside of it, especially in the neighborhoods of population with  economic concentration.                                                           &n

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
A New Model Design for Combating COVID -19 Pandemic Based on SVM and CNN Approaches
...Show More Authors

       In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from      Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial

... Show More
View Publication Preview PDF
Scopus (13)
Crossref (3)
Scopus Crossref
Publication Date
Sun Apr 24 2022
Journal Name
Egyptian Journal Of Chemistry
A novel Tubular Electrochemical Reactor with a Spiral Design of Anode for Treatment of Petroleum Refinery Wastewater
...Show More Authors

View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Apr 11 2011
Journal Name
Icgst
Employing Neural Network and Naive Bayesian Classifier in Mining Data for Car Evaluation
...Show More Authors

In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.

Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network
...Show More Authors

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Thu Jun 27 2024
Journal Name
Journal Of Image And Graphics
ALL-FABNET: Acute Lymphocytic Leukemia Segmentation Using a Flipping Attention Block Decoder-Encoder Network
...Show More Authors

Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution,

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sat Apr 01 2017
Journal Name
Journal Of Economics And Administrative Sciences
The Use of Particle Swarm Algorithm to Solve Queuing Models with Practical Application
...Show More Authors

This paper includes the application of Queuing theory with of Particle swarm algorithm or is called (Intelligence swarm) to solve the problem of The queues and developed for General commission for taxes /branch Karkh center in the service stage of the Department of calculators composed of six  employees , and it was chosen queuing model is a single-service channel  M / M / 1 according to the nature of the circuit work mentioned above and it will be divided according to the letters system for each employee, and  it was composed of data collection times (arrival time , service time, departure time)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 24 2021
Journal Name
Ieee Access
Smart IoT Network Based Convolutional Recurrent Neural Network With Element-Wise Prediction System
...Show More Authors

An Intelligent Internet of Things network based on an Artificial Intelligent System, can substantially control and reduce the congestion effects in the network. In this paper, an artificial intelligent system is proposed for eliminating the congestion effects in traffic load in an Intelligent Internet of Things network based on a deep learning Convolutional Recurrent Neural Network with a modified Element-wise Attention Gate. The invisible layer of the modified Element-wise Attention Gate structure has self-feedback to increase its long short-term memory. The artificial intelligent system is implemented for next step ahead traffic estimation and clustering the network. In the proposed architecture, each sensing node is adaptive and able to

... Show More
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref