The duo module plays an important role in the module theory. Many researchers generalized this concept such as Ozcan AC, Hadi IMA and Ahmed MA. It is known that in a duo module, every submodule is fully invariant. This paper used the class of St-closed submodules to work out a module with the feature that all St-closed submodules are fully invariant. Such a module is called an Stc-duo module. This class of modules contains the duo module properly as well as the CL-duo module which was introduced by Ahmed MA. The behaviour of this new kind of module was considered and studied in detail,for instance, the hereditary property of the St-duo module was investigated, as the result; under certain conditions, every St-closed submodule of an St-duo module is also St-duo. Another characterization of the Stc-duo module was given. Additionally, the relationships of St-duo among some types of modules were investigated and discussed, for example; In the class of semi-extending modules, every weak duo module is anStc-duo module.Also, the authors gave a case in which St-duo, duo, CL-duo and weak duo are equivalent. Furthermore, the St-duo module was used to make the concepts semi-extending and FI-extending equivalent
Objective: To assess prospectively functional outcome of interlocked intramedullary nailing fixation in management of closed tibia shaft fractures. Methodology: This prospective study included 134 patients with closed shaft tibia fractures with age 18-60 years and isolated closed fracture of shaft of tibia. The fractures were fixed by interlocking intramedullary nail. At follow-up after 12 months postoperatively, the functional outcome was assessed radiographically for the sign of union and clinically according to Klemm-Borner criteria. Results: The mean age was 38.55 years. Out of 134 patients, 55.2% were male. The cause was road traffic accident in 44.8%, majority of the fracture occur in the mid-shaft (41.8%), and oblique fracture was th
... Show MoreSuppose R has been an identity-preserving commutative ring, and suppose V has been a legitimate submodule of R-module W. A submodule V has been J-Prime Occasionally as well as occasionally based on what’s needed, it has been acceptable: x ∈ V + J(W) according to some of that r ∈ R, x ∈ W and J(W) an interpretation of the Jacobson radical of W, which x ∈ V or r ∈ [V: W] = {s ∈ R; sW ⊆ V}. To that end, we investigate the notion of J-Prime submodules and characterize some of the attributes of has been classification of submodules.
In this research note approximately prime submodules is defined as a new generalization of prime submodules of unitary modules over a commutative ring with identity. A proper submodule of an -module is called an approximaitly prime submodule of (for short app-prime submodule), if when ever , where , , implies that either or . So, an ideal of a ring is called app-prime ideal of if is an app-prime submodule of -module . Several basic properties, characterizations and examples of approximaitly prime submodules were given. Furthermore, the definition of approximaitly prime radical of submodules of modules were introduced, and some of it is properties were established.
Suppose that F is a reciprocal ring which has a unity and suppose that H is an F-module. We topologize La-Prim(H), the set of all primary La-submodules of H , similar to that for FPrim(F), the spectrum of fuzzy primary ideals of F, and examine the characteristics of this topological space. Particularly, we will research the relation between La-Prim(H) and La-Prim(F/ Ann(H)) and get some results.
The analytical study of optical bistability is concerned in a fully
optimized laser Fabry-Perot system. The related phenomena of
switching dynamics and optimization procedure are also included.
From the steady state of optical bistability equation can plot the
incident intensity versus the round trip phase shift (φ) for different
values of dark mistuning
12
,
6
,
3
,
1.5
0 , o
or finesse (F= 1, 5, 20,
100). In order to obtain different optical bistable loops. The inputoutput
characteristic for a nonlinear Fabry-Perot etalon of a different
values of finesse (F) and using different initial detuning (φ0) are used
in this rese
Background: Symptoms related to the upper gastro-intestinal tract are very common. Attribution of these symptoms to upper G. I. T.diseases are usually done on clinical bases, which could be confirmed by Esophago Gastro Duodenoscopy (EGD). The use of such tools might increase the diagnosis accuracy for such complaints. The indications for upper G I endoscopy might decrease the negative results of endoscopies.Objective: To follow strict indications for Esophago Gastro Duodenoscopy in order to decrease the negative endoscopy results. Methods: One thousand eight hundred and ninety cases were subjected to EGD from Feb. 1999 to Feb 2009 at Alkindy Teaching Hospital and Abd-Al-Majeed private hospital in Baghdad, Iraq. A special endoscopy unit f
... Show MoreA theoretical and experimental investigation was carried out to study the behavior of a two-phase closed thermosyphon loop (TPCTL) during steady-state operation using different working fluids. Three working fluids were investigated, i.e., distilled water, methanol, and ethanol. The TPCTL was constructed from an evaporator, condenser, and two pipelines (riser and downcomer). The driving force is the difference in pressure between the evaporator and condenser sections and the fluid returns to the heating section by gravity. In this study, the significant parameters used in the experiments were filling ratios (FR%) of 50%, 75%, and 100% and heat-input range at the evaporator section of 215-860.2 W. When the loop reached to
... Show MoreThe concept of epiform modules is a dual of the notion of monoform modules. In this work we give some properties of this class of modules. Also, we give conditions under which every hollow (copolyform) module is epiform.
Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,ï) there exists a submodule X of ï such that f (N) ïƒ X ≈ M, where ï is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in ï embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N. Moreover, we generalize some properties of weakly N-injectiv
... Show More