Nowadays, it is quite usual to transmit data through the internet, making safe online communication essential and transmitting data over internet channels requires maintaining its confidentiality and ensuring the integrity of the transmitted data from unauthorized individuals. The two most common techniques for supplying security are cryptography and steganography. Data is converted from a readable format into an unreadable one using cryptography. Steganography is the technique of hiding sensitive information in digital media including image, audio, and video. In our proposed system, both encryption and hiding techniques will be utilized. This study presents encryption using the S-DES algorithm, which generates a new key in each cycle to increases the complexity of the algorithm detection. An additional shared key between the sender and the receiver is added which is applied before starting the encryption process, that key must be hex-decimal in order to increase the level of security and give enough time to delay the guessing of the secret text by the attackers. The secret message data is concealed using one of the two techniques: either least significant bit (3-LSB) steganography or hiding in green and blue bits. To expedite the concealment process, the cover image is enhanced by applying a median filter, the median filter removes noise from the image while preserving its details. Finally, comparing the results of the two methods to determine which is better for the cover image in terms of PSNR metrics and hiding process time.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreAdsorption of lead ions from wastewater by native agricultural waste, precisely tea waste. After the activation and carbonization of tea waste, there was a substantial improvement in surface area and other physical characteristics which include density, bulk density, and porosity. FTIR analysis indicates that the functional groups in tea waste adsorbent are aromatic and carboxylic. It can be concluded that the tea waste could be a good sorbent for the removal of Lead ions from wastewater. Different dosages of the adsorbents were used in the batch studies. A random series of experiments indicated a removal degree efficiency of lead reaching (95 %) at 5 ppm optimum concentration, with adsorbents R2 =97.75% for tea. Three mo
... Show MoreA comparison between the resistance capacity of a single pile excited by two opposite rotary machines embedded in dry and saturated sandy soil was considered experimentally. A small-scale physical model was manufactured to accomplish the experimental work in the laboratory. The physical model consists of: two small motors supplied with eccentric mass 0·012 kg and eccentric distance 20 mm representing the two opposite rotary machines, an aluminum shaft with 20 mm in diameter as the pile, and a steel plate with dimensions of (160 × 160 × 20 mm) as a pile cap. The experimental work was achieved taking the following parameters into consideration, pile embedment depth ratio (L/d; length to diameter) and operating freq
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreRainwater harvesting could be a possible solution to decrease the consequences of water scarcity and energy deficiency in Iraq and the Kurdistan Region of Iraq (KRI). This study aims to calculate the water and energy (electricity) saved by rainwater harvesting for rooftops and green areas in Sulaimani city, KR, Iraq. Various data were acquired from different formal entities in Sulaimani city. Moreover, Google Earth and ArcMap 10.4 software were used for digitizing and calculating the total rooftop and green areas. The results showed that for the used runoff coefficients (0.8 and 0.95), the harvested rainwater volumes were 2901563 and 12197131 m³ during the study period (2005 – 2006) and (2019-2020). Moreover, by compa
... Show MorePolyaromatic hydrocarbons (PAHs) are a group of aromatic compounds that contain at least two rings. These compounds are found naturally in petroleum products and are considered the most prevalent pollutants in the environment. The lack of microorganism capable of degrading some PAHs led to their accumulation in the environment which usually causes major health problems as many of these compounds are known carcinogens. Xanthene is one of the small PAHs which has three rings. Many xanthene derivatives are useful dyes that are used for dyeing wood and cosmetic articles. However, several studies have illustrated that these compounds have toxic and carcinogenic effects. The first step of the bacterial degradation of xanthene is conducted by d
... Show MoreTin oxide was deposited by using vacuum thermal method on silicon wafer engraved by Computer Numerical Controlled (CNC) Machine. The inscription was engraved by diamond-made brine. Deep 0.05 mm in the form of concentric squares. Electrical results in the dark were shown high value of forward current and the high value of the detection factor from 6.42 before engraving to 10.41 after engraving. (I-V) characters in illumination with powers (50, 100, 150, 200, 250) mW/cm2 show Improved properties of the detector, Especially at power (150, 200, 250) mW/cm2. Response improved in rise time from 2.4 μs to 0.72 μs and time of inactivity improved 515.2 μs to 44.2 μs. Sensitivity angle increased at zone from 40o to 65o.