The oil and gas industry relies heavily on IT innovations to manage business processes, but the exponential generation of data has led to concerns about processing big data, generating valuable insights, and making timely decisions. Many companies have adopted Big Data Analytics (BDA) solutions to address these challenges. However, determining the adoption of BDA solutions requires a thorough understanding of the contextual factors influencing these decisions. This research explores these factors using a new Technology-Organisation-Environment (TOE) framework, presenting technological, organisational, and environmental factors. The study used a Delphi research method and seven heterogeneous panelists from an Oman oil and gas company
... Show MoreThis paper delves into some significant performance measures (PMs) of a bulk arrival queueing system with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The bulk arrival queuing system deals with observation arrival into the queuing system as a constant group size before allowing individual customers entering to the service. This leads to obtaining a new tool with the aid of generating function methods. The corresponding traditional bulk queueing system model is more convenient under an uncertain environment. The α-cut approach is applied with the conventional Zadeh's extension principle (ZEP) to transform the triangular membership functions (Mem. Fs) fuzzy queues into a family of conventional b
... Show MoreOne of the most significant elements influencing weather, climate, and the environment is vegetation cover. Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI) over the years 2019–2022 were estimated based on four Landsat 8 TIRS’s images covering Duhok City. Using the radiative transfer model, the city's land surface temperature (LST) during the next four years was calculated. The aim of this study is to compute the temperature at the land's surface (LST) from the years 2019-2022 and understand the link, between LST, NDVI, and NDBI and the capability for mapping by LANDSAT-8 TIRS's. The findings revealed that the NDBI and the NDVI had the strongest correlation with the
... Show MoreNoor oil field is one of smallest fields in Missan province. Twelve well penetrates the Mishrif Formation in Noor field and eight of them were selected for this study. Mishrif formation is one of the most important reservoirs in Noor field and it consists of one anticline dome and bounded by the Khasib formation at the top and the Rumaila formation at the bottom. The reservoir was divided into eight units separated by isolated units according to partition taken by a rounding fields.
In this paper histograms frequency distribution of the porosity, permeability, and water saturation were plotted for MA unit of Mishrif formation in Noor field, and then transformed to the normal distribution by applying the Box-Cox transformation alg
... Show MoreHartha Formation is an overburdened horizon in the X-oilfield which generates a lot of Non-Productive Time (NPT) associated with drilling mud losses. This study has been conducted to investigate the loss events in this formation as well as to provide geological interpretations based on datasets from nine wells in this field of interest. The interpretation was based on different analyses including wireline logs, cuttings descriptions, image logs, and analog data. Seismic and coherency data were also used to formulate the geological interpretations and calibrate that with the loss events of the Hartha Fm.
The results revealed that the upper part of the Hartha Fm. was identified as an interval capable of creating potentia
... Show MoreThe purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Different frequency distributions models were fitted to the monthly data of raw water Turbidity at water treatment plants (WTPs) along Tigris River in Baghdad. Eight water treatment plants in Baghdad were selected, with raw water turbidity data for the period (2008-2014). The frequency distribution models used in this study are the Normal, Log-normal, Weibull, Exponential and two parameters Gamma type. The Kolmogorov-Smirnov test was used to evaluate the goodness of fit. The data for years (2008-2011) were used for building the models. The best fitted distributions were Log-Normal (LN) for Al-Karkh, Al-Wathbah, Al-Qadisiya, Al- Dawrah and, Al-Rashid WTPs. Gamma distribution fitted well for East Tigris and Al-Karamah WTPs. As for Al-
... Show More