The deep learning algorithm has recently achieved a lot of success, especially in the field of computer vision. This research aims to describe the classification method applied to the dataset of multiple types of images (Synthetic Aperture Radar (SAR) images and non-SAR images). In such a classification, transfer learning was used followed by fine-tuning methods. Besides, pre-trained architectures were used on the known image database ImageNet. The model VGG16 was indeed used as a feature extractor and a new classifier was trained based on extracted features.The input data mainly focused on the dataset consist of five classes including the SAR images class (houses) and the non-SAR images classes (Cats, Dogs, Horses, and Humans). The Conv
... Show MoreIn this paper, membrane-based computing image segmentation, both region-based and edge-based, is proposed for medical images that involve two types of neighborhood relations between pixels. These neighborhood relations—namely, 4-adjacency and 8-adjacency of a membrane computing approach—construct a family of tissue-like P systems for segmenting actual 2D medical images in a constant number of steps; the two types of adjacency were compared using different hardware platforms. The process involves the generation of membrane-based segmentation rules for 2D medical images. The rules are written in the P-Lingua format and appended to the input image for visualization. The findings show that the neighborhood relations between pixels o
... Show MoreWith the continuous progress of image retrieval technology, the speed of searching for the required image from a large amount of image data has become an important issue. Convolutional neural networks (CNNs) have been used in image retrieval. However, many image retrieval systems based on CNNs have poor ability to express image features. Content-based Image Retrieval (CBIR) is a method of finding desired images from image databases. However, CBIR suffers from lower accuracy in retrieving images from large-scale image databases. In this paper, the proposed system is an improvement of the convolutional neural network for greater accuracy and a machine learning tool that can be used for automatic image retrieval. It includes two phases
... Show MoreThe basic solution to overcome difficult issues related to huge size of digital images is to recruited image compression techniques to reduce images size for efficient storage and fast transmission. In this paper, a new scheme of pixel base technique is proposed for grayscale image compression that implicitly utilize hybrid techniques of spatial modelling base technique of minimum residual along with transformed technique of Discrete Wavelet Transform (DWT) that also impels mixed between lossless and lossy techniques to ensure highly performance in terms of compression ratio and quality. The proposed technique has been applied on a set of standard test images and the results obtained are significantly encourage compared with Joint P
... Show MoreThis research aims to know the intellectual picture the displaced people formed about aid organizations and determine whether they were positive or negative, the researchers used survey tool as standard to study the society represented by displaced people living in Baghdad camps from Shiites, Sunnis, Shabak, Turkmen, Christians, and Ezidis.
The researcher reached to important results and the most important thing he found is that displaced people living in camps included in this survey hold a positive opinion about organizations working to meet their demands but they complain about the shortfall in the health care side.
The research also found that displaced people from (Shabak, Turkmen, and Ezidi) minorities see that internati
This paper presents a combination of enhancement techniques for fingerprint images affected by different type of noise. These techniques were applied to improve image quality and come up with an acceptable image contrast. The proposed method included five different enhancement techniques: Normalization, Histogram Equalization, Binarization, Skeletonization and Fusion. The Normalization process standardized the pixel intensity which facilitated the processing of subsequent image enhancement stages. Subsequently, the Histogram Equalization technique increased the contrast of the images. Furthermore, the Binarization and Skeletonization techniques were implemented to differentiate between the ridge and valley structures and to obtain one
... Show MoreThis research includes a study of the ability of Iraqi porcelanite rocks powder to remove the basic Safranine dye from its aqueous process by adsorption. The experiments were carried out at 298Kelvin in order to determine the effect of the starting concentration for Safranin dye, mixing time, pH, and the effect of ionic Strength. The good conditions were perfect for safranine dye adsorption was performed when0.0200g from that adsorbed particles and the removal max percentage was found be 96.86% at 9 mg/L , 20 minutes adsorption time and at PH=8 and in 298 K. The isothermal equilibrum stoichiometric adsorption confirmed, the process data were examined by Langmuir, Freundlich and Temkin adsorption equations at different temperatures
... Show More