Industrial dyes are major pollutants in wastewater and river water with an initial visible concentration of 1 mg/L. Recent studies have shown the possibility of using polyphenol oxidase in catalytic biological treatment due to its ability to oxidize a large number of dyes and pollutants in wastewater and the flexibility to work in wide ranges of temperature, pH and salinity. It is easy availability as well as the low economic cost resulting from its use in biological treatments, this enzyme polyphenol oxidase was used. The findings in this study showed that the extraction of polyphenol oxidase (PPO) from potato peel was homogenized with potassium phosphate buffer (0.1 M, pH 7) at a ratio of 1:10 (weight: volume) for two min. The result of enzyme purification by ion exchange chromatography showed that the yield of this step was 64 % and the specific activity was 6541.67 U/mg. The polyphenol oxidase was immobilized covalently on the functionalized pumice stone (25.2 U/gm) compared with other methods. The characterization results demonstrated that the optimum pH for immobilized and free enzyme activity was 6.0 while the pH range of free and immobilized polyphenol oxidase stability was from 4.5 -7.0 and 3.5 - 8.5 respectively. The better temperature for free and immobilized polyphenol oxidase activity was 25 ºC, whereas the free and immobilized polyphenol oxidase was stable at 15-35 and 15-50 °C respectively. The outcomes showed that the decolorization efficiency of blue textile dye employing immobilized polyphenol oxidase reached 99.85 % after 24 hr. for 100 mg/L concentration while for other concentrations 200, 300, 400, 500 and 1000 mg/L the decolorization efficiencies were 85.96, 76.15, 72.54, 66.94 and 63.5 % respectively. Based on the results, the immobilized polyphenol oxidase on pumice stone is highly efficient in removing textile dyes at large concentrations and in different environmental conditions.
Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforwar
... Show MoreAdsorption techniques are widely used to remove organics pollutants from waste water particularly, when using low cost adsorbent available in Iraq. Al-Khriet powder which was found in legs of Typha Domingensis is used as bio sorbent for removing phenolic compounds from aqueous solution. The influence of adsorbent dosage and contact time on removal percentage and adsorb ate amount of phenol and 4- nitro phenol onto Al-Khriet were studied. The highest adsorption capacity was for 4-nitrophenol 91.5% than for phenol 82% with 50 mg/L concentration, 0.5 gm. dosage of adsorbent and pH 6 under a batch condition. The experimental data were tested using different isotherm models. The results show that Freundlich model resulted in the best fit also
... Show MoreIn this research a computational simulation has been carried out on the design and properties of the electrostatic mirror and a mathematical expression has been suggested to represent the axial potential of an electrostatic mirror. The electron beam path using the Bimurzaev technique had been investigated as mirror trajectory with the aid of Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements. The Electrode shape of mirror two electrodes has been determined by using package SIMION computer program. Computations have shown that the suggested potentials giv
... Show MoreIn this paper, the Decomposition method was used to find approximation solutions for a system of linear Fredholm integral equations of the second kind. In this method the solution of a functional equations is considered as the sum of an infinite series usually converging to the solution, and Adomian decomposition method for solving linear and nonlinear integral equations. Finally, numerical examples are prepared to illustrate these considerations.
In this work, the study of