<span lang="EN-GB">Transmitting the highest capacity throughput over the longest possible distance without any regeneration stage is an important goal of any long-haul optical network system. Accordingly, Polarization-Multiplexed Quadrature Phase-Shift-Keying (PM-QPSK) was introduced lately to achieve high bit-rate with relatively high spectral efficiency. Unfortunately, the required broad bandwidth of PM-QPSK increases the linear and nonlinear impairments in the physical layer of the optical fiber network. Increased attention has been spent to compensate for these impairments in the last years. In this paper, Single Mode Fiber (SMF), single channel, PM-QPSK transceiver was simulated, with a mix of optical and electrical (Digital Signal Processing (DSP)) compensation stages to minimize the impairments. The behaviour of the proposed system was investigated under four conditions: without compensation, with only optical compensator, with only DSP compensator and finally with both compensators. An evidence improvement was noticed in the case of hybrid compensation, where the transmission distance was multiplied from (720 km) to more than (3000 km) at 40 Gb/s.</span>
This research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis
... Show MoreThe research studied and analyzed the hybrid parallel-series systems of asymmetrical components by applying different experiments of simulations used to estimate the reliability function of those systems through the use of the maximum likelihood method as well as the Bayes standard method via both symmetrical and asymmetrical loss functions following Rayleigh distribution and Informative Prior distribution. The simulation experiments included different sizes of samples and default parameters which were then compared with one another depending on Square Error averages. Following that was the application of Bayes standard method by the Entropy Loss function that proved successful throughout the experimental side in finding the reliability fun
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
I n this paper ,we 'viii consider the density questions associC;lted with the single hidden layer feed forward model. We proved that a FFNN with one hidden layer can uniformly approximate any continuous function in C(k)(where k is a compact set in R11 ) to any required accuracy.
However, if the set of basis function is dense then the ANN's can has al most one hidden layer. But if the set of basis function non-dense, then we need more hidden layers. Also, we have shown that there exist localized functions and that there is no t
... Show MoreThe aim of this paper is to design fast neural networks to approximate periodic functions, that is, design a fully connected networks contains links between all nodes in adjacent layers which can speed up the approximation times, reduce approximation failures, and increase possibility of obtaining the globally optimal approximation. We training suggested network by Levenberg-Marquardt training algorithm then speeding suggested networks by choosing most activation function (transfer function) which having a very fast convergence rate for reasonable size networks. In all algorithms, the gradient of the performance function (energy function) is used to determine how to
... Show More