This article aims to provide a bibliometric analysis of intellectual capital research published in the Scopus database from 1956 to 2020 to trace the development of scientific activities that can pave the way for future studies by shedding light on the gaps in the field. The analysis focuses on 638 intellectual capital-related papers published in the Scopus database over 60 years, drawing upon a bibliometric analysis using VOSviewer. This paper highlights the mainstream of the current research in the intellectual capital field, based on the Scopus database, by presenting a detailed bibliometric analysis of the trend and development of intellectual capital research in the past six decades, including journals, authors, countries, institutes, co-occurrence, and author’s keywords. The findings imply that intellectual capital researchers do not use broad relevant theories and findings from studies beyond their clusters. Another result is that developing nations continue to be underexplored in terms of intellectual property research due to a lack of trust representation and a lack of appropriate investigators. Finally, the data analysis identifies a number of potential research issues to be investigated regarding intellectual capital development, which serve as raw material for future research. Once again, this study provides a framework for firms to build and implement intellectual capital development plans.
Many fuzzy clustering are based on within-cluster scatter with a compactness measure , but in this paper explaining new fuzzy clustering method which depend on within-cluster scatter with a compactness measure and between-cluster scatter with a separation measure called the fuzzy compactness and separation (FCS). The fuzzy linear discriminant analysis (FLDA) based on within-cluster scatter matrix and between-cluster scatter matrix . Then two fuzzy scattering matrices in the objective function assure the compactness between data elements and cluster centers .To test the optimal number of clusters using validation clustering method is discuss .After that an illustrate example are applied.
This research aims to analyze and simulate biochemical real test data for uncovering the relationships among the tests, and how each of them impacts others. The data were acquired from Iraqi private biochemical laboratory. However, these data have many dimensions with a high rate of null values, and big patient numbers. Then, several experiments have been applied on these data beginning with unsupervised techniques such as hierarchical clustering, and k-means, but the results were not clear. Then the preprocessing step performed, to make the dataset analyzable by supervised techniques such as Linear Discriminant Analysis (LDA), Classification And Regression Tree (CART), Logistic Regression (LR), K-Nearest Neighbor (K-NN), Naïve Bays (NB
... Show MoreThe aim of this study is to achieve the best distinguishing function of the variables which have common characteristics to distinguish between the groups in order to identify the situation of the governorates that suffer from the problem of deprivation. This allows the parties concerned and the regulatory authorities to intervene to take corrective measures. The main indicators of the deprivation index included (education, health, infrastructure, housing, protection) were based on 2010 data available in the Central Bureau of Statistics
Abstract:
The great importance that distinguish these factorial experiments made them subject a desirable for use and application in many fields, particularly in the field of agriculture, which is considered the broad area for experimental designs applications.
And the second case for the factorial experiment, which faces researchers have great difficulty in dealing with the case unbalance we mean that frequencies treatments factorial are not equal meaning (that is allocated a number unequal of blocks or units experimental per tre
... Show MoreIn this paper, a new hybridization of supervised principal component analysis (SPCA) and stochastic gradient descent techniques is proposed, and called as SGD-SPCA, for real large datasets that have a small number of samples in high dimensional space. SGD-SPCA is proposed to become an important tool that can be used to diagnose and treat cancer accurately. When we have large datasets that require many parameters, SGD-SPCA is an excellent method, and it can easily update the parameters when a new observation shows up. Two cancer datasets are used, the first is for Leukemia and the second is for small round blue cell tumors. Also, simulation datasets are used to compare principal component analysis (PCA), SPCA, and SGD-SPCA. The results sh
... Show MoreThe spatial variation of regional development means that some regions to be a center of activities and services and job opportunities and economic development, and are usually in major urban centers, while lacking in other regions to such activities and services. Perhaps the studies of spatial variation SPATIAL INEQUALITY, regional development, REGIONAL DEVELOPMENT has had the greatest impact on the operations of regional planning in particular the study of the regional dimension of any city requires that you review the basis and theoretical framework, which refers to the inevitability of the existence of disparities across regions, due to the properties of the regions population and economic political and environmental The study
... Show MoreAs they are the smallest functional parts of the muscle, motor units (MUs) are considered as the basic building blocks of the neuromuscular system. Monitoring MU recruitment, de-recruitment, and firing rate (by either invasive or surface techniques) leads to the understanding of motor control strategies and of their pathological alterations. EMG signal decomposition is the process of identification and classification of individual motor unit action potentials (MUAPs) in the interference pattern detected with either intramuscular or surface electrodes. Signal processing techniques were used in EMG signal decomposition to understand fundamental and physiological issues. Many techniques have been developed to decompose intramuscularly detec
... Show MoreSince the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data
... Show MoreThis study deals with the estimation of critical load of unidirectional polymer matrix composite plates by using experimental and finite element techniques at different fiber angles and fiber volume fraction of the composite plate.
Buckling analysis illustrated that the critical load decreases in nonlinear relationship with the increase of the fiber angle and that it increases with the increase of the fiber volume fraction.
The results show that the maximum value of the critical load is (629.54 N/m) at (q = 0°) and (Vf = 40 %) for the finite element method, while the minimum val
... Show More