In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
The influence of anodization time with the electrochemical cell design on the fabrication process of porous silicon (PS) nanostructures based on two electrochemical anodization cells (designed single tank cell and double tank cell) with two anodization times (10 and 30 minutes) was studied. Atomic force Microscopy (AFM) characterization had revealed three types of pores, mesopores, mesopore fill of mesopores, and macropore fill of mesopores were obtained from designed single tank cell with (10 and 30 minutes) of anodization time, whilst for double tank cell has not revealed precise information about the size and type of pores. Pores formation have been further approved by current-voltage (I-V) measurement and pho
... Show MoreThe objective of the present work was to estimate water requirements and water use efficiency for Broccoli under normal irrigation conditions and sewage irrigation. Field experiment was carried out during the season 2018 at station/Sulaimni agricultural station/Bakrajo –College of Agricultural Sciences. The experiment included three treatments: River water irrigation in all season growth (I1), Sewage water irrigation in all season growth (I2), Alternate irrigation (one river irrigation followed by two sewage water irrigation) in all season growth (I3). The experimental Design was Randomized Complete Block Design (RCBD) w
Laser ablation of a silver target immersed in distilled water using Nd:YAG laser with a fundamental wavelength of 1064nm was carried out to fabricate silver nanoparticles (Ag NPs) with different laser energy in the presence and absence of magnetic field. UV-Visible spectrum showed that the nanoparticles are almost spherical in shape. The number of Ag NPs increased by increasing laser energy while their particle size was reduced by increasing laser energy without magnetic field. In the presence of magnetic field, the size of Ag NPs increased slightly by increasing laser energy. According to AFM results, the presence of magnetic field did not affect the average diameter of Ag NPs. The presence of a magn
... Show MoreThe ability of four local fungal isolates for extracellular laccase production has been tested with five grams 1:1(w/v) humidified sawdust as substrate in mineral salt medium. After 21 day of incubation at 25±1 ? C and using one mycelial plug (5mm), higher level of laccase activity (0.15U/ml) and specific activity (15U/mg) were observed by Pleurotus ostreatus in comparison with other fungal isolates. The results of optimum conditions for laccase production from selected isolate showed that, the maximum laccase activity (0.55U/ml) and specific activity (55U/mg) were obtained at moisture ratio 1:3 (w/v), using 3 mycelial plugs (5 mm), after 15 days incubation period at 25±1 ? C. The results of phenol degradation by crud laccase revealed th
... Show MoreThe present work investigates the synthesis of silver nanoparticles (AgNPs) by a biological method using L.Rosa flower extract and silver nitrate as precursors. Optimum conditions of synthesis were studies, such as pH, temperature, concentration of extract, concentration of silver nitrate, and stability with time. Characterization of AgNPs was carried out using UV-visible Spectroscopy, Scanning Electron Microscopy, X-Ray Diffraction, Fourier Transform Infrared and Transmission Electron Microscopy. The biosynthesized AgNPs exhibited inhibitory effects on creatine kinase activity in the sera of patients with myocardial infarction, compared with control subjects. Thermodynamic and kinetic studies of c
... Show MoreABSTRACT:
Microencapsulation is used to modify and retard drug release as well as to overcome the unpleasant effect
(gastrointestinal disturbances) which are associated with repeated and overdose of ibuprofen per day.
So that, a newly developed method of microencapsulation was utilized (a modified organic method) through a
modification of aqueous colloidal polymer dispersion method using ethylcellulose and sodium alginate coating materials to
prepare a sustained release ibuprofen microcapsules.
The effect of core : wall ratio on the percent yield and encapsulation efficiency of prepared microcapsules was low, whereas
, the release of drug from prepared microcapsules was affected by core: wall ratio ,proportion of coa
The coefficient of charge transfer at heterogeneous devices of Au metal with a well-known dyeis investigations using quantum model.Four different solvent are used to estimation the effective transition energy. The potential barrier at interface of Au and dye has been determined using effective transition energy and difference between the Fermi energy of Au metal and ionization energy of dye. A possible transfer mechanism cross the potential barrier dyeand coupling strength interaction between the electronic levels in systems of Au and is discussed.Differentdata of effective transition energy and potential barrier calculations suggest that solvent is more suitable to binds Au with dye.
The present project involves photodegrading the dye solochrom violet under advanced oxidation techniques at (25 oC) temperature and UV light. Zinc Oxide (ZnO) and UV radiation at a wavelength of 580 nm were used to conduct the photocatalytic reaction of the solochrom violet dye. One of the factors looked into was the impact of the starting conditions. pH, the amount of original hydrogen peroxide, and the dye concentration time radiation were used. For hours, the kinetics and percentages of degradation were examined at various intervals. In general, it has been discovered that the photodegradation rates of the dye were greater when H2O2 and ZnO were combined with UV light. The best wavelength to use was determined. Modern oxidation techni
... Show MoreThe present study aims to evaluate the biosorption of reactive orange dye by using garden grass. Experiments were carried out in a batch reactor to obtain equilibrium and thermodynamic data. Experimental parameters affecting the biosorption process such as pH, shaking time, initial dye concentrations, and temperature were thoroughly examined. The optimum pH for removal was found to be 4. Fourier transform infrared spectroscopy analysis indicated that the electronegative groups on the surface of garden grass were the major groups responsible for the biosorption process. Four sorption isotherm models were employed to analyze the experimental data of which Temkin and Pyzhey model was found to be most suitable one. The maxim
... Show More