The aim of this research work is to study the effect of stabilizing gypseous soil, which covers vast areas in the middle, west and south parts of Iraq, using liquid asphalt on its strength properties to be used as a base course layer replacing the traditional materials of coarse aggregate and broken stones which are scarce at economical prices and hauling distances. Gypseous soil brought from Al-Ramadi City, west of Iraq, with gypsum content of 66.65%, medium curing cutback asphalt (MC-30), and hydrated lime are used in this study. The conducted tests on untreated and treated gypseous soil with different percentages of medium curing cutback asphalt (MC-30), water, and lime were: unconfined compression strength, and one dimensional confined compression under both dry and absorbed test conditions. The test results showed that stabilizing gypseous soil using the optimum fluid content of 16% (5% cutback asphalt+11% water) have improved the unconfined compressive strength, compressibility, rebound consolidation, and waterproofing of gypseous soil, but under absorbed condition the stabilized gypseous soil using cutback asphalt only did not satisfy the requirements for base course construction, therefore it was decided to use lime additive to improve the properties of soil-cutback mixture under absorbed condition.
One of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of
... Show MoreIn this experimental and numerical analysis, three varieties of under-reamed piles comprising one bulb were used. The location of the bulb changes from pile to pile, as it is found at the bottom, center, and top of the pile, respectively.
This paper has dealing with experimentally works which includes properties of materials and testing program. The testing program includes rotine characterization tests, chemical, and physical tests for samples of gypseous soil. Samples of disturbed and undisturbed soil was obtained of seven different locations of Salah-Aldeen province. The unified classification system was adopted of study region. Except sample 7, soil categorization (as poorly graded sand) was a good graded sand soil. Samples had non plasticity rate (NP). The results of laboratory tests (by using Arc-Map GIS program) were enhanced by spatial interpolation mapping utilizing Inverse Distance Weighted Scheme.
In this study, concentrations of radon were measured for seventeen samples of soil distributed in three Sulphuric Spring, in addition to other regions as a background in Hit City in AL-Anbar Governorate. The radon concentrations in soil samples measured by using alpha-emitters registration that emits from radon (222Rn) in (CR-39) track detector. The concentrations values were calculated by a comparison with standard samples. The results show that the radon concentrations in first spring varies from (258.253- 347.762 Bq/m3), second spring (230.374-305.209 Bq/m3), third spring (292.002-336.023 Bq/m3) and the average radon concentration in other regions (187.821 Bq/m3). As a conclusion of the study radon concentration in Sulphuric Spring is r
... Show MoreAbstract The present work aims to study the performance of reinforced compacted clay soil by sand columns stabilized with sodium silicate to obtain more solid columns than the surrounding soil. The experimental work was carried out by using a lab model to evaluate the performance of both the floating and end bearing sand columns. The results showed that the improvement ratio for the soil reinforced with sand columns stabilized with sodium silicate reached 390% for the type of floating columns and 438% for end bearing columns.
A field experiment was conducted during the autumn of 2021 at the Agricultural Research Department station / Abu Ghraib to evaluate the soil moisture, water potential distribution, and growth factors of maize crops under alternating and constant partial drip irrigation methods. In the experiment, two irrigation systems were used, surface drip irrigation (DI) and subsurface irrigation (SD); under each irrigation system, five irrigation methods were: conventional irrigation (CI), and 75 and 50% of the amount of water of CI of each of the alternating partial irrigation APRI75 and APRI50 and the constant partial irrigation FPRI75 and FPRI50 respectively. The results showed that the water depth for conventional irrigation (C1) was 658.3
... Show MoreElectro-kinetic remediation technology is one of the developing technologies that offer great promise for the cleanup of soils contaminated with heavy metals. A numerical model was formulated to simulate copper (Cu) transport under an electric field using one-dimensional diffusion-advection equations describing the contaminant transport driven by chemical and electrical gradients in soil during the electro-kinetic remediation as a function of time and space. This model included complex physicochemical factors affecting the transport phenomena, such as soil pH value, aqueous phase reaction, adsorption, and precipitation. One-dimensional finitedifference computer program successfully predicted meaningful values for soil pH profiles and Cu
... Show MoreIn the geotechnical and terramechanical engineering applications, precise understandings are yet to be established on the off-road structures interacting with complex soil profiles. Several theoretical and experimental approaches have been used to measure the ultimate bearing capacity of the layered soil, but with a significant level of differences depending on the failure mechanisms assumed. Furthermore, local displacement fields in layered soils are not yet studied well. Here, the bearing capacity of a dense sand layer overlying loose sand beneath a rigid beam is studied under the plain-strain condition. The study employs using digital particle image velocimetry (DPIV) and finite element method (FEM) simulations. In the FEM, an experiment
... Show MoreThis research was carried out to study the effect of plants on the wetted area for two soil types in Iraq and predict an equation to determine the wetted radius and depth for two different soil types cultivated with different types of plants, the wetting patterns for the soils were predicted at every thirty minute for a total irrigation time equal to 3 hr. Five defferent discharges of emitter and five initial volumetric soil moisture contents were used ranged between field capacity and wilting point were utilized to simulate the wetting patterns. The simulation of the water flow from a single point emitter was completed by utilized HYDRUS-2D/3D software, version 2.05. Two methods were used in developing equations to predict the domains o
... Show MoreThe research aims to learn spatial disparities tracts of agricultural crops in the
province of Maysan and their relationship (the salinity of the soil and the degree of chemical
interaction (PH)) The research is divided into an introduction and three Investigation eat first
section spatial disparities agricultural crops (cereals, vegetables, legumes and forage). The
comparison between the years of production in the province where the province has seen
varied spatial by hand and taking second section degrees of soil salinity and its impact on
agriculture, as well as the chemical reaction (PH) and its impact on agriculture The third
section has been used three technical techniques first linkage and the second simple an