Efficient management of treated sewage effluents protects the environment and reuse of municipal, industrial, agricultural and recreational as compensation for water shortages as a second source of water. This study was conducted to investigate the overall performance and evaluate the effluent quality from Al- Rustamiya sewage treatment plant (STP), Baghdad, Iraq by determining the effluent quality index (EQI). This assessment included daily records of major influent and effluent sewage parameters that were obtained from the municipal sewage plant laboratory recorded from January 2011 to December 2018. The result showed that the treated sewage effluent quality from STP was within the Iraqi quality standards (IQS) for disposal and the overall efficiency indicated a positive efficiency of the STP within the order BOD > COD > TSS > chloride. The results revealed that the effluent quality index (EQI) lied under a good water category for both effluent disposal and irrigation use. The multiple linear regression model (MLR) was used for the prediction of EQI and the results provided good estimates for the EQI data sets with a high coefficient of determination (R2=98%). From this analysis, EQI is highly significantly interrelated with TSS, BOD5, and COD within the values 88.9%, 78.6%, and 76.3% respectively. The artificial neural network (ANN) model was developed to predict the effluent quality index based on the selected sewage characteristics. Results provided good estimates for the EQI data sets with a high coefficient of determination (R2=99.8%) and lower relative error and TSS was more effective on the EQI model other than parameters with the relative importance 47.3%. So, the MLR and ANN models were found to provide an effective tool in efficient predicting EQI that can be used effectively to monitor effluent parameters and describe the suitability of treated sewage to quality achieved according to Iraqi quality standards (IQS) for effluent disposal and Food Agriculture Organization (FAO) standards for irrigation purposes.
Brachytherapy treatment is primarily used for the certain handling kinds of cancerous tumors. Using radionuclides for the study of tumors has been studied for a very long time, but the introduction of mathematical models or radiobiological models has made treatment planning easy. Using mathematical models helps to compute the survival probabilities of irradiated tissues and cancer cells. With the expansion of using HDR-High dose rate Brachytherapy and LDR-low dose rate Brachytherapy for the treatment of cancer, it requires fractionated does treatment plan to irradiate the tumor. In this paper, authors have discussed dose calculation algorithms that are used in Brachytherapy treatment planning. Precise and less time-consuming calculations
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
he dairy industry is one of the industrial activities classified within the food industries in all phases of the dairy industry, which leads to an increase in the amount of wastewater discharged from this industry. The study was conducted in the Abu Ghraib dairy factory, classified as one of the central factories in Iraq, located in the west of Baghdad governorate, with a design capacity of 22,815 tons of dairy products. The characteristics of the liquid waste generated from the factory were determined for the following parameters biological oxygen demand (BOD5), Chemical oxygen demand (COD), total suspended solids (TSS), pH, nitrate, phosphate, chloride, and sulfate with an average value of (1079, 1945, 323, 9.2, 24, 2
... Show MoreThis study aimed at comparing the performance of vertical, horizontal and hybrid subsurface flow systems in secondary treatment for the effluent wastewater from the primary basins at Al-Rustumia wastewater treatment plant, Baghdad, Iraq. The treatments were monitored for six weeks while the testsduration were from 4 to 12 September 2018 under continuous wastewater feeding for chemical oxygen demand (COD), total suspended solid (TSS),ammonia-nitrogen(NH4-N) and phosphate (PO4-P) in comparison with FAO and USEPA standards for effluent discharge to evaluate the suitability of treated water for irrigation purposes. Among the systems planted with Phragmites Australia, the hybrid subsurface flow system which cons
... Show MoreThe objective of the present work was to estimate water requirements and water use efficiency for Broccoli under normal irrigation conditions and sewage irrigation. Field experiment was carried out during the season 2018 at station/Sulaimni agricultural station/Bakrajo –College of Agricultural Sciences. The experiment included three treatments: River water irrigation in all season growth (I1), Sewage water irrigation in all season growth (I2), Alternate irrigation (one river irrigation followed by two sewage water irrigation) in all season growth (I3). The experimental Design was Randomized Complete Block Design (RCBD) w
ENGLISH
Most of drinking water consuming all over the world has been treated at the water treatment plant (WTP) where raw water is abstracted from reservoirs and rivers. The turbidity removal efficiency is very important to supply safe drinking water. This study is focusing on the use of multiple linear regression (MLR) and artificial neural network (ANN) models to predict the turbidity removal efficiency of Al-Wahda WTP in Baghdad city. The measured physico-chemical parameters were used to determine their effect on turbidity removal efficiency in various processes. The suitable formulation of the ANN model is examined throughout many preparations, trials, and steps of evaluation. The predict
ENGLISH