The performance of asphalt pavements is crucial due to heavy traffic loads from civil and industrial developments. Various additives and modifiers are used in flexible roads to improve their resistance to deterioration caused by climatic changes. From this context, modifying the asphalt binder with polymers is popular in asphalt pavement construction. The present research investigates the effect of Polyethylene (PE) polymers in powder form on the characteristics of asphalt mixtures since these polymers are composed of hydrocarbons. It is similar to asphalt binders, making them very effective in enhancing the performance of neat asphalt produced from the oil refinery. To confirm this, two types of PE, High-Density PE (HDPE) and Low-Density PE (LDPE), were blended with neat asphalt binder at different dosages of 0%, 2%, 4%, and 6% by the weight of asphalt binder. The physical tests, including penetration, ductility, softening point, and weight loss on heat, were conducted to examine neat and PE-modified binders' rheological properties, durability, and temperature sensitivity. Marshall stability, stiffness index, tensile strength, and Scanning Electron Microscope (SEM) were also employed to assess the performance of PE-modified asphalt mixtures. The findings reveal that incorporating PE into asphalt mixtures significantly improves their mechanical properties, and the most optimal results are achieved when using 6% of both HDPE and LDPE. Specifically, modifying the asphalt binder with the inclusion of 6% HDPE and LDPE presents a remarkable increase in stability of 167.6% and 150.9%, respectively, compared to conventional mixtures. The stiffness index is improved for HDPE and LDPE-modified mixtures, which offers these mixtures superior resistance to permanent deformation. The moisture damage resistance can be enhanced by modification of the asphalt binder with HDPE and LDPE, especially at the inclusion of 6%. SEM images of asphalt pavement demonstrate HDPE's superiority in terms of distribution and dispersion in asphalt binder. In conclusion, the properties of HDPE-modified mixtures are better than those of LDPE-modified and untreated mixtures.
Improving the ability of asphalt pavement to survive the heavily repeated axle loads and weathering challenges in Iraq has been the subject of research for many years. The critical need for such data in the design and construction of more durable flexible pavement in bridge deck material is paramount. One of new possible steps is the epoxy asphalt concrete, which is classified as a superior asphalt concrete in roads and greatly imparts the level of design and construction. This paper describes a study on 40-50 penetration graded asphalt cement mixed with epoxy to produce asphalt concrete mixtures. The tests carried out are the Marshall properties, permanent deformation, flexural fatigue cracking and moisture damage. Epoxy asphalt mixes perf
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show MoreRutting is mainly referring to pavement permanent deformation, it is a major problem for flexible pavement and it is a complicated process and highly observed along with many segments of asphalt pavement in Iraq. The occurrence of this defect is related to several variables such as elevated temperatures and high wheel loads. Studying effective methods to reduce rutting distress is of great significance for providing a safe and along-life road. The asphalt mixture used to be modified by adding different types of additives. The addition of additives typically excesses stiffness, improves temperature susceptibility, and reduces moisture sensitivity. For this work, steel fibres have been used for modifying asphalt mixture as they incorp
... Show MoreThis research studies the effect of adding five different percentages of polymer (2, 4, 6, 8, and 10% of cement weight) on cement mortar's fresh and hardened properties, which was cured at laboratory temperature for 7, 14, and 28 days. Workability increases with increasing polymer. The workability value was lowest (25.6 and 29.4) % in mixtures containing 2% and 4% of (SBR). Increasing polymer ratios significantly decreased mechanical properties (compressive and flexural strength). Therefore, the best results were at 2% SBR and 4% SBR at 28 days of age. An inverse relationship was recorded between the increase in SBR ratios and polymer-modified cement mortar's compressive and flexural strength values. In general, the high
... Show MorePermanent deformation, fatigue and thermal cracking are the three typical distresses of flexible pavement. Using hydrated lime (HL) into the conventional limestone mineral additive has been widely practiced, including in Europe, to improve the mechanical properties of hot mix asphalt (HMA) concrete and as the result the durability of the constructed pavement. Large number of experimental studies have been reported to find the optimum addition of HL for the improvement on HMA concrete mechanical properties, moisture susceptibility and fatigue resistance. Pavement in service is under complex thermomechanical stress-strain conditions due to coupled atmospheric and surrounding environment temperature variation and the traffic loading. To predic
... Show MoreBackground: Studying and investigating the transverse strength(Ts), impact strength(Is), hardness (Hr) and surface roughness(Ra) of conventional and modified autopolymerizing acrylic resin with different weight percentages of biopolymer kraftlignin, after curing in different water temperatures; 40°C and 80°C. Material and Methods: Standard acrylic specimens were fabricated according to ADA specification No.12 for transverse strength, ISO 179 was used for impact testing, Shore D for hardness and profilometerfor surface roughness. The material lignin first dispersed in the monomer, then the powder PMMA is immediately added. Ligninadded in different weight percentages. Then cured using pressure pot (Ivomet) in two temperatures;40°C a
... Show MoreAlginate is one of the natural biopolymers that is widely used for drug formulations, combination of alginate with other polymers, such as gum acacia, pectin, and carrageenan can increase mechanical strength, therefore, can reduce leakage of the encapsulated active pharmaceutical ingredient from the polymer matrix. Interaction of alginate and these polymers can occur via intermolecular hydrogen bonds causing synergism, which is determined from the viscosity of polymer mixture.
Alginate was combined with gum acacia/pectin/carrageenan in different blending ratios (100:0, 75:25, 50:50, 25:75, and 0:100) with and without addition of CaCl2. The synergism effect is obtained from the design of experimental (DoE), and calculati
... Show More